• 제목/요약/키워드: Dynamic security assessment

검색결과 30건 처리시간 0.021초

전력계통 동태 안전성 평가에 코호넨 신경망 적용 연구 (An Application of Kohonen Neural Networks to Dynamic Security Assessment)

  • 이광호;박영문;김광원;박준호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권6호
    • /
    • pp.253-258
    • /
    • 2000
  • This paper presents an application of Kohonen neural networks to assess the dynamic security of power systems. The dynamic security assessment(DSA) is an important factor in power system operation, but conventional techniques have not achieved the desired speed and accuracy. The critical clearing time(CCT) is an attribute which provides significant information about the quality of the post-fault system behaviour. The function of Kohonen networks is a mapping of the pre-fault system conditions into the neurons based on the CCTs. The power flow on each line is used as the input data, and an activated output neuron has information of the CCT of each contingency. The trajectory of the activated neurons during load changes can be used in on-line DSA efficiently. The applicability of the proposed method is demonstrated using a 9-bus example.

  • PDF

온라인 과도안정도 평가를 위한 새로운 불안정모드 선정 알고리즘 (A New Algorithm for Unstable Mode Decision in the On-line Transient Stability Assessment)

  • 장동환;김정우;전영환
    • 전기학회논문지
    • /
    • 제57권7호
    • /
    • pp.1123-1128
    • /
    • 2008
  • The necessity of online dynamic security assessment is getting apparent under Electricity Market environments, as operation of power system is exposed to more various operating conditions. For on-line dynamic security assessment, fast transient stability analysis tool is required for contingency selection. The TEF(Transient Energy Function) method is a good candidate for this purpose. The clustering of critical generators is crucial for the precise and fast calculation of energy margin. In this paper, we propose a new method for fast decision of mode of instability by using stability indices and energy margin. The method is a new version of our previous paper.[1] Case studies are showing very promising results.

안정도 지수와 에너지 마진을 이용한 불안정 발전기의 clustering 법 (A Novel Method for Clustering Critical Generator by using Stability Indices and Energy Margin)

  • 장동환;정연재;전영환;남해곤
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권9호
    • /
    • pp.441-448
    • /
    • 2005
  • On-line dynamic security assessment is becoming more and more important for the stable operation of power systems as load level increases. The necessity is getting apparent under Electricity Market environments, as operation of power system is exposed to more various operating conditions. For on-line dynamic security assessment, fast transient stability analysis tool is required for contingency selection. The TEF(Transient Energy Function) method is a good candidate for this purpose. The clustering of critical generators is crucial for the precise and fast calculation of energy margin. In this paper, we propose a new method for fast decision of mode of instability by using stability indices. Case study shows very promising results.

복합전력계통 신뢰도평가에 있어서 확률론적 안전도연구 (Probabilistic Security Analysis in Composite Power System Reliability)

  • 김형철;차준민;김진오;권세혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.46-48
    • /
    • 2005
  • This paper discusses a probabilistic method for power system security assessment. The security analysis relates to the ability of the electric power systems to survive sudden disturbances such as electric short circuits or unanticipated loss of system elements. It consists of both steady state and dynamic security analyses, which are not two separate issues but should be considered together. In steady state security analysis including voltage security analysis, the analysis checks that the system is operated within security limits by OPF (optimal power flow) after the transition to a new operating point. Until now, many utilities have difficulty in including dynamic aspects due to computational capabilities. On the other hand. dynamic security analysis is required to ensure that the transition may lead to an acceptable operating condition. Transient stability, which is the ability of power systems to maintain synchronism when subjected to a large disturbance. is a principal component in dynamic security analysis. Usually any loss of synchronism may cause additional outages and make the present steady state analysis of the post-contingency condition inadequate for unstable cases. This is the reason for the need of dynamic studies in power systems. Probabilistic criterion can be used to recognize the probabilistic nature of system components while considering system security. In this approach. we do not have to assign any predetermined margin of safety. A comprehensive conceptual framework for probabilistic static and dynamic assessment is presented in this paper. The simulation results of the Western System Coordinating Council (WSCC) system compare an analytical method with Monte-Carlo simulation (MCS).

  • PDF

Mitigating Threats and Security Metrics in Cloud Computing

  • Kar, Jayaprakash;Mishra, Manoj Ranjan
    • Journal of Information Processing Systems
    • /
    • 제12권2호
    • /
    • pp.226-233
    • /
    • 2016
  • Cloud computing is a distributed computing model that has lot of drawbacks and faces difficulties. Many new innovative and emerging techniques take advantage of its features. In this paper, we explore the security threats to and Risk Assessments for cloud computing, attack mitigation frameworks, and the risk-based dynamic access control for cloud computing. Common security threats to cloud computing have been explored and these threats are addressed through acceptable measures via governance and effective risk management using a tailored Security Risk Approach. Most existing Threat and Risk Assessment (TRA) schemes for cloud services use a converse thinking approach to develop theoretical solutions for minimizing the risk of security breaches at a minimal cost. In our study, we propose an improved Attack-Defense Tree mechanism designated as iADTree, for solving the TRA problem in cloud computing environments.

복합전력계통 신뢰도평가의 확률론적 안전도 도입 (The Implementation of Probabilistic Security Analysis in Composite Power System Reliability)

  • 차준민;권세혁;김형철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권5호
    • /
    • pp.185-190
    • /
    • 2006
  • The security analysis relates to the ability of the electric systems to survive sudden disturbances such as electric short circuits or unanticipated loss of system elements. It is composed of both steady state and dynamic security analyses, which are not two separate issues but should be considered together. In steady state security analysis including voltage security analysis, the analysis checks that the system is operated within security limits by OPF (optimal power flow) after the transition of a new operating point. On the other hand, dynamic security analysis deals that the transition will lead to an acceptable operating condition. Transient stability, which is the ability of power systems to maintain synchronism when subjected to a large disturbance, is a principal component in dynamic security analysis. Usually any loss of synchronism will cause additional outages. They make the present steady state analysis of the post-contingency condition inadequate for unstable cases. This is the reason of the need for dynamics of systems. Probabilistic criterion can be used to recognize the probabilistic nature of system components and shows the possibility of system security. A comprehensive conceptual framework for probabilistic static and dynamic assessment is presented in this paper. The simulation results of the Western System Coordinating Council (WSCC) system compare an analytical method with Monte-Carlo simulation (MCS). Also, a case study of the extended IEEE Reliability Test System (RTS) shows the efficiency of this approach.

Visualization of Dynamic Simulation Data for Power System Stability Assessment

  • Song, Chong-Suk;Jang, Gil-Soo;Park, Chang-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권4호
    • /
    • pp.484-492
    • /
    • 2011
  • Power system analyses, which involve the handling of massive data volumes, necessitate the use of effective visualization methods to facilitate analysis and assist the user in obtaining a clear understanding of the present state of the system. This paper introduces an interface that compensates for the limitations of the visualization modules of dynamic security assessment tools, such as PSS/e and TSAT, for power system variables including generator rotor angle and frequency. The compensation is made possible through the automatic provision of dynamic simulation data in visualized and tabular form for better data intuition, thereby considerably reducing the redundant manual operation and time required for data analysis. The interface also determines whether the generators are stable through a generator instability algorithm that scans simulation data and checks for an increase in swing or divergence. The proposed visualization methods are applied to the dynamic simulation results for contingencies in the Korean Electric Power Corporation system, and have been tested by power system researchers to verify the effectiveness of the data visualization interface.

선로조류를 이용한 전력계통 동태 안전성 평가 연구 (A Study on Dynamic Security Assessment by using the Data of Line Power Flows)

  • 이광호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권2호
    • /
    • pp.107-114
    • /
    • 1999
  • This paper presents an application of artificial neural networks(ANN) to assess the dynamic security of power systems. The basic role of ANN is to provide assessment of the system's stability based on training samples from off-line analysi. The critical clearing time(CCT) is an attribute which provides significant information about the quality of the post-fault system behaviour. The function of ANN is a mapping of the pre-fault, fault-on, and post-fault system conditions into the CCT's. In previous work, a feed forward neural network is used to learn this mapping by using the generation outputs during the fault as the input data. However, it takes significant calculation time to make the input data through the network reduction at a fault as the input data. However, it takes significant calculation time to make the input data through the network reduction at a fault considered. In order to enhance the speed of security assessment, the bus data and line powers are used as the input data of the ANN in thil paper. Test results show that the proposed neural networks have the reasonable accuracy and can be used in on-line security assenssment efficiently.

  • PDF

Explosive loading of multi storey RC buildings: Dynamic response and progressive collapse

  • Weerheijm, J.;Mediavilla, J.;van Doormaal, J.C.A.M.
    • Structural Engineering and Mechanics
    • /
    • 제32권2호
    • /
    • pp.193-212
    • /
    • 2009
  • The resilience of a city confronted with a terrorist bomb attack is the background of the paper. The resilience strongly depends on vital infrastructure and the physical protection of people. The protection buildings provide in case of an external explosion is one of the important elements in safety assessment. Besides the aspect of protection, buildings facilitate and enable many functions, e.g., offices, data storage, -handling and -transfer, energy supply, banks, shopping malls etc. When a building is damaged, the loss of functions is directly related to the location, amount of damage and the damage level. At TNO Defence, Security and Safety methods are developed to quantify the resilience of city infrastructure systems (Weerheijm et al. 2007b). In this framework, the dynamic response, damage levels and residual bearing capacity of multi-storey RC buildings is studied. The current paper addresses the aspects of dynamic response and progressive collapse, as well as the proposed method to relate the structural damage to a volume-damage parameter, which can be linked to the loss of functionality. After a general introduction to the research programme and progressive collapse, the study of the dynamic response and damage due to blast loading for a single RC element is described. Shock tube experiments on plates are used as a reference to study the possibilities of engineering methods and an explicit finite element code to quantify the response and residual bearing capacity. Next the dynamic response and progressive collapse of a multi storey RC building is studied numerically, using a number of models. Conclusions are drawn on the ability to predict initial blast damage and progressive collapse. Finally the link between the structural damage of a building and its loss of functionality is described, which is essential input for the envisaged method to quantify the resilience of city infrastructure.

클라우드 서비스 평가 프로그램과 ISO/IEC 27001:2013의 비교 연구 (A Comparison Study between Cloud Service Assessment Programs and ISO/IEC 27001:2013)

  • 최주영;최은정;김명주
    • 디지털융복합연구
    • /
    • 제12권1호
    • /
    • pp.405-414
    • /
    • 2014
  • IT 자원의 동적 확장과 비용절감이라는 클라우드 서비스의 장점은 IT 사용자의 관심이다. 그러나 클라우드 서비스의 신뢰성은 클라우드 서비스를 적극적으로 사용하는데 걸림돌이 되고 있다. 기존 클라우드 서비스의 평가 프로그램은 ISO/IEC 27001:2005을 참고하여 정보보호 평가 항목을 도출하고 클라우드 서비스 특징을 추가하는 방법으로 연구가 이루어지고 있다. 본 논문은 최근 발표된 ISO/IEC 27001:2013의 추가와 삭제 그리고 변경된 통제영역 및 통제 항목을 살펴본다. ISO/IEC 27001:2013의 통제 항목과 클라우드 서비스 평가 프로그램인 CSA CCM v.3, FedRAMP의 통제 항목을 비교 분석하여 정보보호관리체계에서 클라우드 서비스와 관련된 평가 항목을 제시한다. 도출한 통제 항목은 클라우드 서비스 기반의 정보보호관리체계를 운영하는 기업의 보안 정책에 참고 지표가 될 것이다.