• Title/Summary/Keyword: Dynamic rolling analysis

Search Result 132, Processing Time 0.025 seconds

Dynamic analysis of thin-walled open section beam under moving vehicle by transfer matrix method

  • Xiang, Tianyu;Xu, Tengfei;Yuan, Xinpeng;Zhao, Renda;Tong, Yuqiang
    • Structural Engineering and Mechanics
    • /
    • v.30 no.5
    • /
    • pp.603-617
    • /
    • 2008
  • Three dimensional coupled bending-torsion dynamic vibrations of thin-walled open section beam subjected to moving vehicle are investigated by transfer matrix method. Through adopting the idea of Newmark-${\beta}$ method, the partial differential equations of structural vibration can be transformed to the differential equations. Then, those differential equations are solved by transfer matrix method. An iterative scheme is proposed to deal with the coupled bending-torsion terms in the governing vibration equations. The accuracy of the presented method is verified through two numerical examples. Finally, with different eccentricities of vehicle, the torsional vibration of thin-walled open section beam and vertical and rolling vibration of truck body are investigated. It can be concluded from the numerical results that the torsional vibration of beam and rolling vibration of vehicle increase with the eccentricity of vehicle. Moreover, it can be observed that the torsional vibration of thin-walled open section beam may have a significant nonlinear influence on vertical vibration of truck body.

Crash Simulation of Rolling Stock (철도차량 충돌 시뮬레이션)

  • 김필환;이장욱;김진태;김창수
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.401-407
    • /
    • 1998
  • Recently, as the railway vehicles become speedy and massive, the collision is being regarded as an important factor for the assessment of safety for passenger. And the study of collision is being in progress more actively in advanced nations. In this study, the collision analysis is performed by using non-linear dynamic finite element program PAM-CRASH. The carbody used in analysis is made of Aluminum AL6005A to realize lightweight, and designed and manufactured by DHI (Daewoo Heavy Industry) lately. For the accuracy of the result in the practical collision, the experiment of material properties has been performed. The result of the analysis shows the underframe of rolling stock is the most important part as a collision energy absorbing structure. Further study is needed for optimal design which enables the carbody shell structure to disperse absorbing energy adequately.

  • PDF

Improving Collision Energy Absorption In High Speed Train By Using Thin Walled Tubes

  • Salimi, Ehsan;Molatefi, Habib;Rezvani, MohammadAli;Shahsavari, Erfan
    • International Journal of Railway
    • /
    • v.6 no.3
    • /
    • pp.85-89
    • /
    • 2013
  • The purpose of this paper is investigating the effect and influence rates of utilizing thin walled energy absorption tubes for improving crashworthiness parameter by increasing energy absorption of the body in high speed railcars. In order to find this, a proper profile of available tubes is chosen and added to the structure of selected high speed train in Iranian railway network (Pardis Trainset) and then examined in the scenario of impact with other moving rolling stock. Because of the specific features of LS-DYNA 3D software at collision analysis, the dynamic simulation has been performed in LS-DYNA 3D. The results of the analysis clearly indicate the improvement of train crashworthiness as the energy absorption of structure increases more than 30 percent in comparison with the original body. This strategy delays and reduces the shock to the structure. The verification of the simulation is by using ECE R66 standard.

A Study on the Techniques to Evaluate Carbody Accelerations after a Train Collision (충돌 후 열차의 차체 가속도 평가 기법 연구)

  • Kim, Joon-Woo;Koo, Jeong-Seo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.477-485
    • /
    • 2010
  • In this study, we suggested several approaches to evaluate the collision acceleration of a carbody under the article 16 of the Korean rolling stock safety regulations. There are various methods to evaluate the rigid body accelerations such as the displacement comparison method by double integration of filtered acceleration data, the velocity comparison method by direct integration of filtered acceleration data, and the analysis method of a velocity-time curve. We compared these methods one another using the 1D dynamic simulation model of Korean high-speed EMU composed of nonlinear springs or bars, dampers, and masses. From the simulation results, the velocity-time curve analysis method and the displacement comparison method are recommended to filter high frequency oscillations and evaluate the maximum and average accelerations of a carbody after a train collision.

Modeling of coupling device for crash analysis of an electric vehicle (전동차 충돌해석을 위한 연결장치의 모델링)

  • Kim Young-Hoon;Kim Ki-Nam;Jang Hyun-Mog;Park Yeong-Il
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.640-645
    • /
    • 2004
  • In this thesis, the impact analysis for the shunting procedure using the dynamic buffer characteristics of the coupler was developed. In this study, each car was modeled as one dimensional element by using the equivalent system. After the impact, the slip exists only between wheel and rail in the braked trainset. For this analysis the analysis code named the POTAS-MSM (Power Transmission Analysis Software Multi Slip Mechanism) which was developed for the numerical analysis of dynamic system is developed. The validation of this analysis was proven by comparing the numerical results with the results of world-famous S company which is located in Europe.

  • PDF

Vibration Analysis of a Rotary Compressor

  • Han, Hyung-Suk;Hwang, Seon-Woong;Koo, Jeong-Seo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.43-53
    • /
    • 2004
  • The vibration of a rolling piston type rotary compressor for air-conditioning use is analyzed numerically and experimentally. Multibody dynamic analysis methods to predict the vibration are given. The compressor is modeled as a multibody system composed of bodies, joints, and force elements. Experimental results are shown to compare with simulation results. A sensitivity study using different variables that affect the compressor vibration is also carried out. It is found that the mass of the weight balancer plays an important role in acceleration.

Vibration Analysis of a Rolling Piston Type Rotary Compressor (구름 피스톤 이용 회전식 압축기 진동 해석 연구)

  • 한형석;황선웅;이은섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.6
    • /
    • pp.205-213
    • /
    • 2003
  • This paper is concerned with a roiling piston type rotary compressor for air conditioning use. Vibration of the compressor is analyzed numerically and experimentally. Multibody dynamic analysis methods to predict the vibration is given. The compressor is modeled as a system composed of bodies, joints, and force elements. Experimental results are also shown to be compared with simulation results. A sensitivity study using different variables that affect the compressor vibration is also carried out. It is found that the mass of weight balancer plays an important role in acceleration.

Modeling of Stabilizer for Vehicle Dynamic Analysis (차량동역학 해석에서 스태필라이저의 모델링)

  • Cho, Byoung-Kwan;Song, Sung-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.30-35
    • /
    • 1996
  • Tires, bushings and stabilizers are the most difficult elements in vehicle modeling for dynamic analyses. Many studies were performed for tire modeling and the primitive data of bushing elements can be obtained from the suspension designer, but there are few things for stabilizer. This paper presents simulation results for the 3 kinds of stabilizer model with the multi-body dynamic analysis program ADAMS. Each simulation result was compared with the vehicle test result, and the stabilizer model was proposed to analyze the vehicle behaviors precisely.

  • PDF

Dynamic Characteristics of Linear Motion Guide Supported by Rolling Ball Bearings (볼 베어링을 이용 Linear Motion Guide의 동적 특성에 관한 연구)

  • 최재석;이용섭;김윤영;이동진;이성진;유정훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.326-331
    • /
    • 2004
  • The linear motion (LM) guide using ball bearing has many advantages compared with conventional sliding guides. Therefore, LM guide using ball bearing has been used widely to increase the accuracy of the position of a system. This research investigates dynamic characteristics of LM guide through mainly linear analysis. Linear analysis is accomplished by Lagrange equation and finite element method. And another trial that is nonlinear analysis about one mode of LM guide(bouncing mode) from Hertzian contact theory is accomplished in the latter half of this research. Through nonlinear analysis we could observe the softening characteristic due to the Hertzian contact nonlinearity.

  • PDF

Three-Dimensional Dynamic Model of Full Vehicle (전차량의 3차원 동역학 모델)

  • Min, Kyung-Deuk;Kim, Young Chol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.162-172
    • /
    • 2014
  • A three-dimensional dynamic model for simulating various motions of full vehicle is presented. The model has 16 independent degrees of freedom (DOF) consisting of three kinds of components; a vehicle body of 6 DOF, 4 independent suspensions equipped at every corner of the body, and 4 tire models linked with each suspension. The dynamic equations are represented in six coordinate frames such as world fixed coordinate, vehicle fixed coordinate, and four wheel fixed coordinate frames. Then these lead to the approximated prediction model of vehicle posture. Both lateral and longitudinal dynamics can be computed simultaneously under the conditions of which various inputs including steering command, driving torque, gravity, rolling resistance of tire, aerodynamic resistance, etc. are considered. It is shown through simulations that the proposed 3D model can be useful for precise design and performance analysis of any full vehicle control systems.