• Title/Summary/Keyword: Dynamic range expansion

Search Result 55, Processing Time 0.024 seconds

Analysis of the February 2014 East Coast Heavy SnowFall Case Due to Blocking (블로킹에 의한 2014년 2월 동해안 지방 폭설 분석)

  • Bae, Jeong-Ho;Min, Ki-Hong
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.227-241
    • /
    • 2016
  • This study investigated the cause of the heavy snowfall that occurred in the East Coast of Korea from 6 February to 14 February 2014. The synoptic conditions were analyzed using blocking index, equivalent potential temperature, potential vorticity, maritime temperature difference, temperature advection, and ground convergence. During the case period, a large blocking pattern developed over the Western Pacific causing the flow to be stagnant, and there was a North-South oriented High-to-Low pressure system over the Korean Peninsula because of this arrangement. The case period was divided into three parts based on the synoptic forcing that was responsible for the heavy snowfall; detailed analyses were conducted for the first and last period. In the first period, a heavy snowfall occurred over the entire Korean Peninsula due to strong updrafts from baroclinic instability and a low pressure caused by potential vorticity located at the mid-troposphere. In the lower atmosphere, a North-South oriented High-to-Low pressure system over the Eastern Korea intensified the easterly airflow and created a convergence zone near the ground which strengthened the upslope effect of the Taebaek Mountain range with a cumulative fresh snowfall amount of 41 cm in the East Coast region. In the last period, the cold air nestled in the Maritime Province of Siberia and Manchuria strengthened much more than that in the first half and extended to the East Sea. The temperature difference between the 850 hPa air and the SST was large and convective clouds developed over the sea. The highest cumulative fresh snow amount of 39.7 cm was recorded in the coastal area during this period. During the entire period, vertically oriented equivalent potential temperature showed neutral stability layer that helped the cloud formation and development in the East Coast. The 2014 heavy snowfall case over the East Coast provinces of Korea were due to: 1) stagnation of the system by blocking pattern, 2) the dynamic effect of mid-level potential vorticity of 1.6 PVU, 3) the easterly air flow from North-South oriented High-to-Low pressure system, 4) the existence of vertically oriented neutral stable layer, and 5) the expansion of strong cold air into the East Sea which created a large temperature difference between the air and the ocean.

Evaluation of Road and Traffic Information Use Efficiency on Changes in LDM-based Electronic Horizon through Microscopic Simulation Model (미시적 교통 시뮬레이션을 활용한 LDM 기반 도로·교통정보 활성화 구간 변화에 따른 정보 이용 효율성 평가)

  • Kim, Hoe Kyoung;Chung, Younshik;Park, Jaehyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.231-238
    • /
    • 2023
  • Since there is a limit to the physically visible horizon that sensors for autonomous driving can perceive, complementary utilization of digital map data such as a Local Dynamic Map (LDM) along the probable route of an Autonomous Vehicle (AV) is proposed for safe and efficient driving. Although the amount of digital map data may be insignificant compared to the amount of information collected from the sensors of an AV, efficient management of map data is inevitable for the efficient information processing of AVs. The objective of this study is to analyze the efficiency of information use and information processing time of AV according to the expansion of the active section of LDM-based static road and traffic information. To carry out this objective, a microscopic simulator model, VISSIM and VISSIM COM, was employed, and an area of about 9 km × 13 km was selected in the Busan Metropolitan Area, which includes heterogeneous traffic flows (i.e., uninterrupted and interrupted flows) as well as various road geometries. In addition, the LDM information used in AVs refers to the real high-definition map (HDM) built on the basis of ISO 22726-1. As a result of the analysis, as the electronic horizon area increases, while short links are intensively recognized on interrupted urban roads and the sum of link lengths increases as well, the number of recognized links is relatively small on uninterrupted traffic road but the sum of link lengths is large due to a small number of long links. Therefore, this study showed that an efficient range of electronic horizon for HDM data collection, processing, and management are set as 600 m on interrupted urban roads considering the 12 links corresponding to three downstream intersections and 700 m on uninterrupted traffic road associated with the 10 km sum of link lengths, respectively.

Varietal and Culture-Seasonal Variation in Physicochemical Properties of Rice Grain and Their Interrelationships (쌀의 식미 관련 이화학 성분의 품종 및 작기간 변이와 상관 관계)

  • 오용비
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.1
    • /
    • pp.72-84
    • /
    • 1993
  • This study was carried out to understand the varietal variation in physicochemical properties of rice grain and those environmental changes by different transplanting time, and to elucidate the interrelationships among the factors related with eating quality of cooked rice. Fifty three rice samples, among which fifty samples were harvested at ordinary or late transplanted plots of the Crop Experiment Station in Suwon and three samples were harvested orpurchased from Niigata prefecture in Japan, were tested for various physicochemical components of rice grain and some physical factors of cooked rice. All of twenty seven rice cultivars tested were the recent-bred Korean japonica rice showing the wide range of maturity from early to medium-late heading and considerable difference in palatability of cooked rice. Amylose content, taste value by Nireco palatability tester (TVN), iodine blue color of cooking extracts(IB), and the ratio of IB /extracted solid amounts (ES) increased significantly by late transplanting, while viscosity (VN) and Mg / K. N value by Nireco tester, hot-water absorption of milled rice (HA), loss tangent of cooked rice by Rheolograph-Micro(LT), and most viscogram characteristics except setback viscosity (C-P) decreased drastically by late transplanting as compared with ordinary transplanting. Most of physicochemical properties of milled rice revealed narrower varietal variation in lately transplanted plot than in ordinary transplanted one. Protein content (PRO), volume expansion rate of cooked rice(VE), C-P and all physical factors of cooked rice by Rheolograph-Micro showed almost negligible seasonal variation, while amylose content (AM), VN, HA, IB/ES, peak viscosity(P), hot viscosity(H) and breakdown(P-H) viscosity exhibited considerably large seasonal variation. The early-headed varieties revealed lower amylose content and smaller seasonal variation of IB/ES compared with medium or medium-late headed rice varieties. AM was closely associatied with IB and IB / ES and VN was highly correlated with Mg/K. N and TVN in both ordinary and late transplanted plots. VN also was highly negatively correlated with cooking characteristics and highly positively correlated with viscogram properties in ordinary culture. PRO was closely connected with moisture content of milled rice and L T in ordinary transplanted plot. IB, which was closely connected with ES, was also singificantly associated LT, P and P-H in ordinary seasonal culture. IB/ES was highly negatively correlated with P, P-Hand P-H / C-P in ordinary culture but with LT and dynamic viscosity of cooked rice in late seasonal culture. The thirty rice cultivars were largely classified into two varietal groups by cluster analysis with physicochemical properties related with eating quality of cooked rice. Korean and Japanese high-quality rice cultivars were separately distributed in two respective varietal group.

  • PDF

Movement of Cold Water Mass in the Northern East China Sea in Summer (하계 동중국해 북부 해역에서 저층 냉수괴의 거동)

  • Jang, Sung-Tae;Lee, Jae-Hak;Kim, Cheol-Ho;Jang, Chan-Joo;Jang, Young-Suk
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • The Yellow Sea Cold Water (YSCW) is formed by cold and dry wind in the previous winter, and is known to spread southward along the central trough of the Yellow Sea in summer. Water characteristics of the YSCW and its movement in the northern East China Sea (ECS) are investigated by analyzing CTD (conductivity-Temperature-Depth) data collected from summertime hydrographic surveys between 2003 and 2009. By water mass analysis, we newly define the North Western Cold Water (NWCW) as a cold water mass observed in the study area. It is characterized by temperature below $13.2^{\circ}C$, salinity of 32.6~33.7 psu, and density (${\sigma}_t$) of 24.7~25.5. The NWCW appears to flow southward at about a speed less than 2 cm/s according to the geostrophic calculation. The newly defined NWCW shows an interannual variation in the range of temperature and occupied area, which is in close relation with the sea surface temperature (SST) over the Yellow Sea and the East China Sea in the previous winter season. The winter SST is determined by winter air temperature, which shows a high correlation with the winter-mean Arctic Oscillation (AO) index. The negative winter-mean AO causes the low winter SST over the Yellow Sea and the East China Sea, resulting in the summertime expansion and lower temperature of the NWCW in the study area. This study shows a dynamic relation among the winter-mean AO index, SST, and NWCW, which helps to predict the movement of NWCW in the northern ECS in summer.

A Simulation-Based Investigation of an Advanced Traveler Information System with V2V in Urban Network (시뮬레이션기법을 통한 차량 간 통신을 이용한 첨단교통정보시스템의 효과 분석 (도시 도로망을 중심으로))

  • Kim, Hoe-Kyoung
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.5
    • /
    • pp.121-138
    • /
    • 2011
  • More affordable and available cutting-edge technologies (e.g., wireless vehicle communication) are regarded as a possible alternative to the fixed infrastructure-based traffic information system requiring the expensive infrastructure investments and mostly implemented in the uninterrupted freeway network with limited spatial system expansion. This paper develops an advanced decentralized traveler information System (ATIS) using vehicle-to-vehicle (V2V) communication system whose performance (drivers' travel time savings) are enhanced by three complementary functions (autonomous automatic incident detection algorithm, reliable sample size function, and driver behavior model) and evaluates it in the typical $6{\times}6$ urban grid network with non-recurrent traffic state (traffic incident) with the varying key parameters (traffic flow, communication radio range, and penetration ratio), employing the off-the-shelf microscopic simulation model (VISSIM) under the ideal vehicle communication environment. Simulation outputs indicate that as the three key parameters are increased more participating vehicles are involved for traffic data propagation in the less communication groups at the faster data dissemination speed. Also, participating vehicles saved their travel time by dynamically updating the up-to-date traffic states and searching for the new route. Focusing on the travel time difference of (instant) re-routing vehicles, lower traffic flow cases saved more time than higher traffic flow ones. This is because a relatively small number of vehicles in 300vph case re-route during the most system-efficient time period (the early time of the traffic incident) but more vehicles in 514vph case re-route during less system-efficient time period, even after the incident is resolved. Also, normally re-routings on the network-entering links saved more travel time than any other places inside the network except the case where the direct effect of traffic incident triggers vehicle re-routings during the effective incident time period and the location and direction of the incident link determines the spatial distribution of re-routing vehicles.