• Title/Summary/Keyword: Dynamic process model

Search Result 1,422, Processing Time 0.04 seconds

Singularity-Free Dynamic Modeling Including Wheel Dynamics for an Omni-Directional Mobile Robot with Three Caster Wheels

  • Chung, Jae-Heon;Yi, Byung-Ju;Kim, Whee-Kuk;Han, Seog-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.86-100
    • /
    • 2008
  • Most of the previously employed dynamic modeling approaches, including Natural Orthogonal Complement Algorithm, have limitations on their application to the mobile robot, specifically at singular configurations. Also, in their dynamic modeling of mobile robots, wheel dynamics is usually ignored assuming that its dynamic effect is negligibly small. As a remedy for this, a singularity-free operational space dynamic modeling approach based on Lagrange's form of the D' Alembert principle is proposed, and the singularity-free characteristic of the proposed dynamic modeling is discussed in the process of analytical derivation of the proposed dynamic model. Then an accurate dynamic model taking into account the wheel dynamics of the omni-directional mobile robot is derived, and through simulation it is manifested that the effect of the wheel dynamics on the whole dynamic model of the mobile robot may not be negligible, but rather in some cases it is significantly large, possibly affecting the operational performances of dynamic model-based control algorithms. Lastly, the importance of its accurate dynamic model is further illustrated through impulse analysis and its simulation for the mobile robot.

Advanced Process Control of the Critical Dimension in Photolithography

  • Wu, Chien-Feng;Hung, Chih-Ming;Chen, Juhn-Horng;Lee, An-Chen
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.1
    • /
    • pp.12-18
    • /
    • 2008
  • This paper describes two run-to-run controllers, a nonlinear multiple exponential-weight moving-average (NMEWMA) controller and a dynamic model-tuning minimum-variance (DMTMV) controller, for photolithography processes. The relationships between the input recipes (exposure dose and focus) and output variables (critical dimensions) were formed using an experimental design method, and the photolithography process model was built using a multiple regression analysis. Both the NMEWMA and DMTMV controllers could update the process model and obtain the optimal recipes for the next run. Quantified improvements were obtained from simulations and real photolithography processes.

Modeling, simulation and structural analysis of a fluid catalytic cracking (FCC) process

  • Kim, Sungho;Urm, Jaejung;Kim, Dae Shik;Lee, Kihong;Lee, Jong Min
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2327-2335
    • /
    • 2018
  • Fluid catalytic cracking (FCC) is an important chemical process that is widely used to produce valuable petrochemical products by cracking heavier components. However, many difficulties exist in modeling the FCC process due to its complexity. In this study, a dynamic process model of a FCC process is suggested and its structural observability is analyzed. In the process modeling, yield function for the kinetic model of the riser reactor was applied to explain the product distribution. Hydrodynamics, mass balance and energy balance equations of the riser reactor and the regenerator were used to complete the modeling. The process model was tested in steady-state simulation and dynamic simulation, which gives dynamic responses to the change of process variables. The result was compared with the measured data from operating plaint. In the structural analysis, the system was analyzed using the process model and the process design to identify the structural observability of the system. The reactor and regenerator unit in the system were divided into six nodes based on their functions and modeling relationship equations were built based on nodes and edges of the directed graph of the system. Output-set assignment algorithm was demonstrated on the occurrence matrix to find observable nodes and variables. Optimal locations for minimal addition of measurements could be found by completing the whole output-set assignment algorithm of the system. The result of this study can help predict the state more accurately and improve observability of a complex chemical process with minimal cost.

A Study on the Stability of Dynamic Walking of a Humanoid Robot (휴머노이드 로봇의 동보행 안정도에 관한 연구)

  • Lee, Ji-Young;Cho, Jung-San;Lee, Sang-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.125-130
    • /
    • 2016
  • In this paper, we deal with the dynamic walking of a humanoid robot. In our method, the inverted pendulum model is used as a dynamic model for a humanoid robot in which the Zero Moment Point (ZMP) and COG constraints of the robot are analyzed by considering the motion of the robot as that of an inverted pendulum. The motion of a humanoid robot should be generated by considering the dynamics of the robot, which commonly requires a large amount of computation. If a robot walks from one position to another while keeping the ZMP in the stable region, then the robot remains dynamically stable. The linear inverted pendulum model regards the whole robot as a point mass. It is simple, and relatively less computation is needed; however, it cannot model the whole dynamics of a humanoid robot. We propose a method for modeling a humanoid robot as an inverted pendulum system having 14 point masses. We also show that the dynamic stability of a humanoid robot can be determined more precisely by our method.

Model-Based Monitoring of the Turning Force (모델에 근거한 선삭력 모니터링)

  • 허건수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.11-15
    • /
    • 1999
  • Monitoring of the cutting force signals in cutting process has been well emphasized in machine tool communities. Although the cutting force can be directly measured by a tool dynamometer, this method is not always feasible because of high cost and limitations in setup. In this paper an indirect cutting force monitoring system is developed so that the cutting force in turning process is estimated based on a AC spindle drive model. This monitoring system considers the cutting force as a disturbance input to the spindle drive and estimates the cutting force based on the inverse dynamic model. The inverse dynamic model represents the dynamic relation between the cutting force, the motor torque and the motor power. The proposed monitoring system is realized on a CNC lathe and its estimation performance is evaluated experimentally.

  • PDF

Analysis of the Dynamic Characteristics of A Passenger Car Automatic Transmission (승용차용 자동변속기의 동특성 해석)

  • 김영흡;박찬일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.172-181
    • /
    • 1997
  • The dynamic characteristics during gear ratio change including the disturbance of output torque has been one of the most important issues in the study of automatic transmissions of passenger cars. In this paper, to investigate the dynamic characteristics of a passenger car automatic transmission during gear ratio change, a dynamic model of the driveline of a passenger car focused on the automatic transmission is proposed and the dynamic simulation program is developed. The results of the simulation show good agreements with the experimental data, which process the use fullness of the dynamic model and the simulation of the driveline.

  • PDF

A Study on the Accumulation Phenomena of Oxidized Starch in White Water of Closed Fine Papermaking Process (Part 3) -Effect of white water and broke use ratios on the unsteady state of papermaking process- (백상지 공정 폐쇄화에 따른 백수 내 산화전분의 축적 현상에 관한 연구 ( 제 3 보 ) -백수사용량과 파지첨가량 변화에 따른 공정의 비정상상태 변화 -)

  • Ahn, Hyun-Kyun;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.2 s.115
    • /
    • pp.1-8
    • /
    • 2006
  • In this study a process simulation method was used to analyze the accumulation phenomena of anionic starch in the process white water as the closure level of a fine paper making process is increased. A pilot paper machine was used as a model process. Dynamic simulations of the influence of white water usage ratio and uncoated broke addition ratio on the variation of process variable was monitored as a function of time. Results from the dynamic simulations showed that the volume of reservoirs affected the dynamic behavior of the process. The dynamic behavior of flow rate and dissolved starch concentration in process units were different from each other. The speed of the change of dissolved starch concentration in process units was depend on the starting point of the change of dissolved starch concentration, the length of circulation loop, and the volume of reservoirs.

Design of Vacuum Circuit Breaker Based on Dynamic Model (동적모델에 기반한 진공 회로차단기의 설계)

  • 권병희;안길영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1418-1421
    • /
    • 2003
  • The Vacuum circuit breaker is a kind of power circuit breaker and protect electric devices from over-current. In this paper we built a dynamic model of VCB driving mechanism using ADAMS. The development of the new circuit breaker with less energy and more compactable mechanism is focused. Through the dynamic model, the concept design of the new circuit breaker with less energy and more compactable mechanism is proposed, and then the detailed design is carried out through the design process based on the dynamic model.

  • PDF

A Study on the Analysis of Stochastic Nonlinear Dynamic System (확률적 비선형 동적계의 해석에 관한 연구)

  • 남성현;김호룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.697-704
    • /
    • 1995
  • The dynamic characteristics of a system can be critically influenced by system uncertainty, so the dynamic system must be analyzed stochastically in consideration of system uncertainty. This study presents the stochastic model of a nonlinear dynamic system with uncertain parameters under nonstationary stochastic inputs. And this stochastic system is analyzed by a new stochastic process closure method and moment equation method. The first moment equation is numerically evaluated by Runge-Kutta method and the second moment equation is numerically evaluated by stochastic process closure method, 4th cumulant neglect closure method and Runge-Kutta method. But the first and the second moment equations are coupled each other, so this equations are approximately evaluated by a iterative method. Finally the accuracy of the present method is verified by Monte Carlo simulation.

Analysis of Dynamics of Slider in Dynamic Loading Process considering Collision (충돌을 고려한 Dynamic L/UL 슬라이더의 동적 거동 해석)

  • Kim, Bum-Joon;Rhim, Yoon-Chul
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.968-973
    • /
    • 2003
  • Dynamic L/UL system has many merits, but it can develop an undesirable collision during dynamic loading process. In this paper, the dynamics of negative pressure pico slider during the loading process was investigated by numerical simulation. A simplified L/UL model for the suspension system was presented, and a simulation code was built to analyze the motion of the slider. A slider deigns have been simulated at various disk rotating speeds, skew angles of slider. By selection an optimal RPM and pre-skew angle, we can decrease the amount of collision and smoothen the loading process for a given slider-suspension design.

  • PDF