• 제목/요약/키워드: Dynamic process model

검색결과 1,440건 처리시간 0.029초

A Study on the Sloshing Impact Response Analysis for the Insulation System of Membrane Type LNG Cargo Containment System (LNG 탱크 방열구조의 슬로싱 충격 응답 해석법에 관한 연구)

  • Nho, In-Sik;Ki, Min-Seok;Lee, Jae-Man;Kim, Sung-Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 2011년도 정기 학술대회
    • /
    • pp.531-538
    • /
    • 2011
  • To ensure the structural integrity of membrane type LNG tank, the rational assessment of impact pressure and structural responses due to sloshing should be preceded. The sloshing impact pressures acting on the insulation system of LNG tank are typical irregular loads and the structural responses caused by them also very complex behaviors including fluid structure interaction. So it is not easy to estimate them accurately and huge time consuming process would be necessary. In this research, a simplified method to analyze the dynamic structural responses of LNG tank insulation system under pressure time histories obtained by sloshing model test or numerical analysis was proposed. This technique basically based on the concept of linear combination of the triangular response functions which are obtained by the transient response analysis under the unit triangular impact pressure acting on structures in time domain. The validity of suggested method was verified through the example calculations and applied to the structural analysis of real Mark III type insulation system using the sloshing impact pressure time histories obtained by model test.

  • PDF

A Study on the Rainfall-Runoff Analysis of Using Satellite Image (위성영상정보를 이용한 강우유출 해석에 관한 연구)

  • Park, Young-Kee;Lee, Jeung-Seok;Park, Jeong-Gyu
    • Journal of Environmental Science International
    • /
    • 제19권1호
    • /
    • pp.115-124
    • /
    • 2010
  • Urban watershed can be found in the visible changes in technology, the most realistic satellite images is to use the data. Satellite image data on the indicators for progress on the nature of the change of land use is consistent and repetitive information, regular observation makes possible the detailed analysis of space-time. These remote sensing techniques and the type of course and, by using the time series history, the past, the dynamic model and the randomized prediction methodology for the conversion process if the city and river basin cooperation of the space changes effectively will be able to extrapolate. For each of the main changes in river flow, depending on the area of urbanization as determined according to reproduce the duration of the relationship between the urbanization of the area and runoff can be represented as a linear polynomial expression was, if a linear expression in the two fast slew rate of 0.858 to 0.861 showed up, and fast slew rate of 0.934 to 0.974 for the polynomial are reported. Change of land use changes in the watershed of the flow is one of the most affecting elements. Therefore, changes in land use of the correct classification of rivers is a more accurate calculation of the amount of the floodgate. In particular, using the Landsat images through the image of the land use category, land use past data and calculated using the Markov Chain model and predict the future land use plan in the water control project will be used for large likely.

A Simulation Study on Capacity Planning in Hybrid Flowshops for Maximizing Throughput Under a Budget Constraint (혼합흐름공정에서 예산제약하에 생산율을 최대화하는 용량계획에 관한 시뮬레이션 연구)

  • Lee, Geun-Cheol;Choi, Seong-Hoon
    • Journal of the Korea Society for Simulation
    • /
    • 제20권3호
    • /
    • pp.1-10
    • /
    • 2011
  • In this study, we consider a capacity planning problem where the number of machines at each workstation is determined in manufacturing systems of top-edge electronic products such as semiconductor or display. The considered manufacturing system is the typical hybrid flowshop which has identical parallel machines at each workstation and the setup operation occurs when the types of consecutively processed products are different. The objective of the problem is finding good combinations of the numbers of machines at all workstations, under the given capital amount for purchasing machines. Various heuristic methods for determining the numbers of machines at workstations are proposed and the performances were tested through a series of computational experiments. In the study, a simulation model has been developed in order to simulate the considered manufacturing system with dynamic orders and complex process. The simulation model is also used for conducting the computational comparison test among various proposed methods.

A Dynamic Analyses on the Influences of the Governance Decisions for Cheong-ju Won-heungi Eco-Park (청주 원흥이생태공원 조성과정에서 나타난 거버넌스 의사결정 영향력 변화 분석)

  • Kwon, Jeong-Ju;Kim, Dong-Ho;Hwang, Hee-Yun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • 제39권1호
    • /
    • pp.65-74
    • /
    • 2011
  • To establish governance, which is rising as the new urban management system, it is significant to prepare Good-Local governance model that is proper to regional conditions and characteristics. This study analyzes changes in influence of governance participants appeared during the process in ecological park in Chungju Won-heung, using new methodology comparing ideal form and real condition regarding the influence of decision making, which is the key factor of governance. The result of this study showed that influence in participation of governance decision making improved gradually and this developed as Good-Local governance decision making by developing consultation regarding the new regional issue when it comes to operation and management. For further study, general model needs to be established through applying and analyzing suggested analysis method to various governance cases to evaluate the level of influence, which is the key component.

Analysis Method of Ice Load and Ship Structural Response due to Collision of Ice Bergy Bit and Level Ice (유빙 및 평탄빙의 충돌에 의한 빙하중과 선체구조응답 해석기법)

  • Nho, In Sik;Lee, Jae-Man;Oh, Young-Taek;Kim, Sung-Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • 제53권2호
    • /
    • pp.85-91
    • /
    • 2016
  • The most important factor in the structural design of ships and offshore structures operating in arctic region is ice load, which results from ice-structure interaction during the ice collision process. The mechanical properties of ice related to strength and failure, however, show very complicated aspect varying with temperature, volume fraction of brine, grain size, strain rate and etc. So it is nearly impossible to establish a perfect material model of ice satisfying all the mechanical characteristics completely. Therefore, in general, ice collision analysis was carried out by relatively simple material models considering only specific aspects of mechanical characteristics of ice and it would be the most significant cause of inevitable errors in the analysis. Especially, it is well-known that the most distinctive mechanical property of ice is high dependency on strain rate. Ice shows brittle attribute in higher strain rate while it becomes ductile in lower strain rate range. In this study, the simulation method of ice collision to ship hull using the nonlinear dynamic FE analysis was dealt with. To consider the strain rate effects of ice during ice-structural interaction, strain rate dependent constitutive model in which yield stress and hardening behaviors vary with strain rate was adopted. To reduce the huge amount of computing time, the modeling range of ice and ship structure were restricted to the confined region of interest. Under the various scenario of ice-ship hull collision, the structural behavior of hull panels and failure modes of ice were examined by nonlinear FE analysis technique.

NONLINEAR CONTROL FOR CORE POWER OF PRESSURIZED WATER NUCLEAR REACTORS USING CONSTANT AXIAL OFFSET STRATEGY

  • ANSARIFAR, GHOLAM REZA;SAADATZI, SAEED
    • Nuclear Engineering and Technology
    • /
    • 제47권7호
    • /
    • pp.838-848
    • /
    • 2015
  • One of the most important operations in nuclear power plants is load following, in which an imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation is considered to be a constraint for the load following operation. In this paper, the design of a sliding mode control (SMC), which is a robust nonlinear controller, is presented.SMCis ameansto control pressurized water nuclear reactor (PWR) power for the load following operation problem in a way that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO) strategy to ensure xenon oscillations remain bounded. The constant AO is a robust state constraint for the load following problem. The reactor core is simulated based on the two-point nuclear reactor model with a three delayed neutron groups. The stability analysis is given by means of the Lyapunov approach, thus the control system is guaranteed to be stable within a large range. The employed method is easy to implement in practical applications and moreover, the SMC exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness, and stability. Results show that the proposed controller for the load following operation is so effective that the xenon oscillations are kept bounded in the given region.

Lifetime seismic performance assessment of high-rise steel-concrete composite frame with buckling-restrained braces under wind-induced fatigue

  • Liu, Yang;Li, Hong-Nan;Li, Chao;Dong, Tian-Ze
    • Structural Engineering and Mechanics
    • /
    • 제77권2호
    • /
    • pp.197-215
    • /
    • 2021
  • Under a severe environment of multiple hazards such as earthquakes and winds, the life-cycle performance of engineering structures may inevitably be deteriorated due to the fatigue effect caused by long-term exposure to wind loads, which would further increase the structural vulnerability to earthquakes. This paper presents a framework for evaluating the lifetime structural seismic performance under the effect of wind-induced fatigue considering different sources of uncertainties. The seismic behavior of a high-rise steel-concrete composite frame with buckling-restrained braces (FBRB) during its service life is systematically investigated using the proposed approach. Recorded field data for the wind hazard of Fuzhou, Fujian Province of China from Jan. 1, 1980 to Mar. 31, 2019 is collected, based on which the distribution of wind velocity is constructed by the Gumbel model after comparisons. The OpenSees platform is employed to establish the numerical model of the FBRB and conduct subsequent numerical computations. Allowed for the uncertainties caused by the wind generation and structural modeling, the final annual fatigue damage takes the average of 50 groups of simulations. The lifetime structural performance assessments, including static pushover analyses, nonlinear dynamic time history analyses and fragility analyses, are conducted on the time-dependent finite element (FE) models which are modified in lines with the material deterioration models. The results indicate that the structural performance tends to degrade over time under the effect of fatigue, while the influencing degree of fatigue varies with the duration time of fatigue process and seismic intensity. The impact of wind-induced fatigue on structural responses and fragilities are explicitly quantified and discussed in details.

Agent-Based COVID-19 Simulation Considering Dynamic Movement: Changes of Infections According to Detect Levels (동적 움직임 변화를 반영한 에이전트 기반 코로나-19 시뮬레이션: 접촉자 발견 수준에 따른 감염 변화)

  • Lee, Jongsung
    • Journal of the Korea Society for Simulation
    • /
    • 제30권1호
    • /
    • pp.43-54
    • /
    • 2021
  • Since COVID-19 (Severe acute respiratory syndrome coronavirus type 2, SARS-Cov-2) was first discovered at the end of 2019, it has spread rapidly around the world. This study introduces an agent-based simulation model representing COVID-19 spread in South Korea to investigate the effect of detect level (contact tracing) on the virus spread. To develop the model, related data are aggregated and probability distributions are inferred based on the data. The entire process of infection, quarantine, recovery, and death is schematically described and the interaction of people is modeled based on the traffic data. A composite logistic functions are utilized to represent the compliance of people to the government move control such as social distancing. To demonstrate to effect of detect level on the virus spread, detect level is changed from 0% to 100%. The results indicate active contact tracing inhibits the virus spread and the inhibitory effect increases geometrically as the detect level increases.

Numerical study on the resonance behavior of submerged floating tunnels with elastic joint

  • Park, Joohyun;Kang, Seok-Jun;Hwang, Hyun-Joong;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • 제29권3호
    • /
    • pp.207-218
    • /
    • 2022
  • In submerged floating tunnels (SFTs), a next-generation maritime transportation infrastructure, the tunnel module floats in water due to buoyancy. For the effective and economical use of SFTs, connection with the ground is inevitable, but the stability of the shore connection is weak due to stress concentration caused by the displacement difference between the subsea bored tunnel and the SFT. The use of an elastic joint has been proposed as a solution to solve the stability problem, but it changes the dynamic characteristics of the SFT, such as natural frequency and mode shape. In this study, the finite element method (FEM) was used to simulate the elastic joints in shore connections, assuming that the ground is a hard rock without displacement. In addition, a small-scale model test was performed for FEM model validation. A parametric study was conducted on the resonance behavior such as the natural frequency change and velocity, stress, and reaction force distribution change of the SFT system by varying the joint stiffness under loading conditions of various frequencies and directions. The results indicated that the natural frequency of the SFT system increased as the stiffness of the elastic joint increased, and the risk of resonance was the highest in the low-frequency environment. Moreover, stress concentration was observed in both the SFT and the shore connection when resonance occurred in the vertical mode. The results of this study are expected to be utilized in the process of quantitative research such as designing elastic joints to prevent resonance in the future.

PID controller design based on direct synthesis for set point speed control of gas turbine engine in warships (함정용 가스터빈 엔진의 속도 추종제어를 위한 DS 기반의 PID 제어기 설계)

  • Jong-Phil KIM;Ki-Tak RYU;Sang-Sik LEE;Yun-Hyung LEE
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • 제59권1호
    • /
    • pp.55-64
    • /
    • 2023
  • Gas turbine engines are widely used as prime movers of generator and propulsion system in warships. This study addresses the problem of designing a DS-based PID controller for speed control of the LM-2500 gas turbine engine used for propulsion in warships. To this end, we first derive a dynamic model of the LM-2500 using actual sea trail data. Next, the PRC (process reaction curve) method is used to approximate the first-order plus time delay (FOPTD) model, and the DS-based PID controller design technique is proposed according to approximation of the time delay term. The proposed controller conducts set-point tracking simulation using MATLAB (2016b), and evaluates and compares the performance index with the existing control methods. As a result of simulation at each operating point, the proposed controller showed the smallest in %OS, which means that the rpm does not change rapidly. In addition, IAE and IAC were also the smallest, showing the best result in error performance and controller effort.