• Title/Summary/Keyword: Dynamic pile formula

Search Result 25, Processing Time 0.022 seconds

Analytical Study on the Appropriateness of Design Formula and Possibility of Improving Bearing Capacity of Bored Pile (매입말뚝의 설계식 적정성 및 지지력 상향 가능성 분석 연구)

  • Park, Jong-Bae;Lee, Bum-Sik;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.6 no.3
    • /
    • pp.139-145
    • /
    • 2015
  • To improve the pile design efficiency(design bearing capacity/the strength of materials) from 70 percent(160tonf) to 80 percent(190tonf), this paper analysed the existing pile loading test data and performed the precise dynamic loading test and Bi-directional loading test for the first time in Korea. Analysis result of the existing dynamic loading test data by Davisson method showed that bearing capacity of piles penetrated at weathered rock stratum(N=50/15) exceeded 190tonf. But the analysis result by CAPWAP method showed that piles less than the target bearing capacity were 40% due to the lack of impact energy. To get the target bearing capacity from the dynamic loading test, using the hammer over 6tonf to trigger the enough impact energy is necessary. Allowable bearing capacty of Bi-directional static loading test by Davisson method was 260.0~335tonf(ave. 285.3tonf) and exceeded overwhelmingly the target capacity. And this exceeded the bearing capacity of precise dynamic loading test(ave. 202.3tonf) performed on the same piles over 40%. The difference between the capacity of Bi-directional loading test and dynamic loading test was caused by the insufficient impact energy during dynamic loading test and increase by interlocking effect by near piles during Bi-directional static loading test.

Nonlinear soil parameter effects on dynamic embedment of offshore pipeline on soft clay

  • Yu, Su Young;Choi, Han Suk;Lee, Seung Keon;Park, Kyu-Sik;Kim, Do Kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.227-243
    • /
    • 2015
  • In this paper, the effects of nonlinear soft clay on dynamic embedment of offshore pipeline were investigated. Seabed embedment by pipe-soil interactions has impacts on the structural boundary conditions for various subsea structures such as pipeline, riser, pile, and many other systems. A number of studies have been performed to estimate real soil behavior, but their estimation of seabed embedment has not been fully identified and there are still many uncertainties. In this regards, comparison of embedment between field survey and existing empirical models has been performed to identify uncertainties and investigate the effect of nonlinear soil parameter on dynamic embedment. From the comparison, it is found that the dynamic embedment with installation effects based on nonlinear soil model have an influence on seabed embedment. Therefore, the pipe embedment under dynamic condition by nonlinear parameters of soil models was investigated by Dynamic Embedment Factor (DEF) concept, which is defined as the ratio of the dynamic and static embedment of pipeline, in order to overcome the gap between field embedment and currently used empirical and numerical formula. Although DEF through various researches is suggested, its range is too wide and it does not consider dynamic laying effect. It is difficult to find critical parameters that are affecting to the embedment result. Therefore, the study on dynamic embedment factor by soft clay parameters of nonlinear soil model was conducted and the sensitivity analyses about parameters of nonlinear soil model were performed as well. The tendency on dynamic embedment factor was found by conducting numerical analyses using OrcaFlex software. It is found that DEF was influenced by shear strength gradient than other factors. The obtained results will be useful to understand the pipe embedment on soft clay seabed for applying offshore pipeline designs such as on-bottom stability and free span analyses.

Estimation of resistance coefficient of PHC bored pile by Load Test II (재하시험에 의한 PHC 매입말뚝의 저항계수 산정 II)

  • Park, Jong-Bae;Park, Yong-Boo;Kwon, Young-Hwan
    • Land and Housing Review
    • /
    • v.9 no.3
    • /
    • pp.1-8
    • /
    • 2018
  • In Europe and the United States, the use of limit states design has almost been established for pile foundation design. According to the global trend, the Ministry of Land, Transport and Maritime Affairs has established the basic design criteria of the bridge under the limit state design method. However, it is difficult to reflect on the design right now because of lack of research on resistance coefficient of the pile method and ground condition. In this study, to obtain the resistance coefficient of PHC bored pile which is widely used in Korea, the bearing capacity calculated by the LH design standard and the bridge design standard method, the static load test(21 times) and the dynamic load test(EOID 21 times, Restrike 21) The reliability analysis was performed on the results. The analysis of the resistance coefficient of PHC bored pile by loading test was analyzed by adding more than two times data. As a result, the resistance coefficient obtained from the static load test(ultimate bearing capacity) was 0.64 ~ 0.83 according to the design formula and the target reliability index, and the resistance coefficient obtained from the dynamic load test(ultimate bearing capacity) was 0.42~0.55. Respectively. The resistance coefficient obtained from the modified bearing capacity of dynamic load test(EOID's ultimate end bearing capacity + restrike's ultimate skin bearing capacity) was 0.55~0.71, which was reduced to about 14% when compared with the resistance coefficient obtained by the static load test(ultimate bearing capacity). As a result of the addition of the data, the resistivity coefficient was not changed significantly, even if the data were increased more than 2 times by the same value or 0.04 as the previous resistance coefficient. In conclusion, the overall resistance coefficient calculated by the static load test and dynamic load tests in this study is larger than the resistance coefficient of 0.3 suggested by the bridge design standard(2015).

A Study of Change in Current Resistance Value of Electric Motor Requied for Ground Dilling (지반굴착에 소요되는 전기식모터의 전류저항값 변화에 관한 연구)

  • Seo, Dong-Nam;Jeong, Sang-Hoon;Lee, Sang-Hyun;Shin, Jin-Seob;Choi, Sang-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.385-386
    • /
    • 2023
  • In this application study, field pilot tests were performed to evaluate the validity of a proposed formula between the exerted electrical energy and SPT N-value based on the result of the basic study. Measurement sensors and recording system were developed to obtain exerted motor current and drilling depth in a field. By using the correlation formula proposed in the basic study, the measured motor current and boring speed were applied to predict SPT N-value and the predicted N-values were compared to SPT N-value of site exploration. From the comparisons it is verified that the exerted electrical energy to bore ground might be used to predict SPT N-value and pile tip location.

  • PDF

Nonlinear Analysis of Dynamic Response of Jacket Type Offshore Structures (Jacket형 해양구조물(海洋構造物)의 비선형(非線形) 동적응답해석(動的應答解析))

  • Y.C.,Kim;I.S.,Nho;S.W.,Park
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.2
    • /
    • pp.33-45
    • /
    • 1986
  • In the present paper, the nonlinear analysis of dynamic response of the jacket type offshore structures subject to nonlinear fluid force is performed. Furthermore, several analysis methods, such as quasi-static analysis, Newmark-$\beta$ method and state vector time integration technique, and described and compared with each others in order to investigate the efficiency numerical of the schemes for this kind of nonlinear structural analysis. In the problem formulation, various environmental forces acting on the jacket type offshore structure have been studied and calculated. Particularly, hydrodynamic forces are calculated by using the Morison type formula, which contains the interaction effect between the motion of the structure and the velocity of fluid particles. Also, Stokes' 5th order wave theory and Airy's linear wave theory are used to predict the velocity distribution of the fluid particles. Finally, the nonlinear equation of motion of the structure is obtained by using three-dimensional finite element formulation. Based on the above procedures, two examples, i.e. a single pile and a typical offshore jacket platform, are studied in details.

  • PDF