• Title/Summary/Keyword: Dynamic penetration

Search Result 254, Processing Time 0.024 seconds

Studies on Rheological Properties of High Solid Coating Colors(Part 2) - Effect of Rheology Modifiers on High-Shear Viscosity and Dynamic Penetration Behavior - (고농도 도공액의 유동특성에 관한 연구(제2보) - 유동성 조절제가 고전단 점도 및 동적 침투특성에 미치는 영향 -)

  • Yoo, Sung-Jong;Cho, Byoung-Uk;Lee, Yong-Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.3
    • /
    • pp.121-127
    • /
    • 2011
  • This study used two types of rheology modifiers including an alkali-swellable emulsion (ASE) and an surface-adhesion emulsion (SAE) to elucidate their effects on high shear viscosity and dynamic penetration behavior among the flow properties of high solids coating. Since rheology under high shear and dynamic penetration behavior significantly affect the quality of coated paper in case of high solids coating, it is very important to examine the variations in rheology of high solids coating color by rheology modifier. It was found that the high solids coating color prepared with the SAE type showed superior dynamic penetration behavior and high shear viscosity than that with the ASE type rheology modifier.

A Study on the Field Application of a Small Dynamic Cone Penetration Tester Using Hammer Automatic Strike and Penetration Measurement (해머 타격과 관입량 측정이 자동화된 소형 동적콘관입시험기의 현장 적용성 연구)

  • Hwiyoung Chae ;Soondal Kwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.12
    • /
    • pp.5-11
    • /
    • 2023
  • Economic damage is occurring due to landslides and debris flows that occur when the ground artificially created for roads or photovoltaic power generation facilities is weakened by rainfall such as torrential rain. In order to understand the stability of the artificially created ground, it is very important to check the ground information such as the compositional state and mechanical characteristics of the stratum. However, since most of the investigation sites are steep slopes or there are no access roads, it is not easy to enter the drilling equipment commonly used to check ground information and perform standard penetration tests. In this study, a dynamic cone penetration test (DCP) device using a miniaturized auger drilling equipment and an automatic drop device was developed to check the cone resistance value and the dynamic cone penetration test value and analyze the correlation with the standard penetration test value to confirm its applicability at the mountain solar power generation site. As a result, the cone resistance value is qd = 0.46 N and the dynamic cone penetration test value is Nd = 1.58 N, confirming a value similar to the results of existing researchers to secure its reliability.

Development of Advanced Dynamic Cone Penetration Test Apparatus and Its Application Performance Evaluation (개량식 동적 콘 관입시험기의 개발 및 적용성 평가)

  • Kim, Uk-Gie;Zhuang, Li;Lee, Kwang-Wu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.119-131
    • /
    • 2014
  • For quick and accurate ground investigation in wide construction site being not easy to access, advanced dynamic cone penetration test equipment was developed based on widely used equipment abroad. Advantages of existing equipment of portability and simple testing method were reflected in the new developed equipment. Meanwhile, by extending connection of lower rod, penetration depth is raised to 6m from 1 m of the existing equipment. Moreover, by assembly of hammer (2+3+3kg) and cone (3 types) etc., it is possible to perform test under the same conditions with those by German and Japan dynamic cone penetration test equipment (Tsukuba, PWRI and SH types). Auxiliary equipment was applied to make sure of perpendicularity as penetration depth increases. Applicability of the new developed equipment was evaluated through tests on various fields and its reliability was verified.

Evaluation of Compaction Quality Control applied the Dynamic Cone Penetrometer Test based on IoT (다짐품질관리를 위한 IoT 기반 DCPT 적용 평가)

  • Jisun, Kim;Jinyoung, Kim;Namgyu, Kim;Sungha, Baek;Jinwoo, Cho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.1-12
    • /
    • 2022
  • Generally, the plate load test and the field density test are conducted for compaction quality control in earthwork, and then additional analysis. Recently developed that the DCPT (Dynamic Cone Penetration Test) equipment for smart compaction quality control its the system are able to get location and real-time information about worker history management. The IoT-based the DCPT system improved the time-cost in the field compared traditional test, and the functions recording and storage of the DPI (Dynamic Cone Penetration Index) were automated. This paper describes using these DCPT equipment on in-situ and compared to the standards of the DCPT, and the compaction trend had be confirmed with DPI as the field test data. As a result, the DPI of the final compaction decreased by 1.4 times compared to the initial compaction, confirming the increase in the compaction strength of the subgrade compaction layer 10 to 14 cm deep from the surface. A trend of increasing compaction strength was observed. This showed a tendency to increase the compaction strength of the target DPI proposed by MnDOT and the results of the existing plate load test, but there was a difference in the increase rate. Therefore, additional studies are needed on domestic compaction materials and laboratory conditions for target DPI and correlation studies with the plate load tests. If this is reflected, it is suggested that DCPT will be widely used as smart construction equipment in earthworks.

Analysis of load-settlement behaviour of shallow foundations in saturated clays based on CPT and DPT tests

  • Mir, Mouna;Bouafia, Ali;Rahmani, Khaled;Aouali, Nawel
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.119-139
    • /
    • 2017
  • Static Penetration Test (CPT) and Dynamic Penetration Test (DPT) are commonly used in-situ tests in a routine geotechnical investigation. Besides their use for qualitative investigation (lithology, homogeneity and spatial variability), they are used as practical tools of geotechnical characterization (resistance to the penetration, soil rigidity) and modern foundation design as well. The paper aims at presenting the results of an extensive research work on the evaluation of the 1D primary consolidation settlement of saturated clayey soils on the basis of the CPT or DPT tests. The work is based on an analysis of the correlations between the tip resistance to penetration measured in these tests and the parameters of compressibility measured by the compressibility oedometer test, through a local geotechnical database in the northern Algeria. Such an analysis led to the proposal of two methods of calculation of the settlement, one based on the CPT test and the other one on the DPT. The comparison between the predicted settlements and those computed on the basis of the oedometer test showed a good agreement which demonstrate the possbility to use the CPT and DPT tests as reliable tools of computation of foundation settlements in clayey soils.

A Study on the Ground Improvement Effective Evaluation of Reclaimed Land Using Cone Penetration Test (CPT를 이용한 준설매립지반의 개량효과 평가에 관한 연구)

  • Kim, Jong-Kook;Chae, Young-Su;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.910-921
    • /
    • 2004
  • In this study, the pilot tests on the reclaimed land were performed in order to find the suitable construction method with dynamic compaction Type I, Type II at different dynamic energy and hydraulic hammer compaction. The estimation of the compaction through the various pilot tests was performed by the CPT-qc, SPT-N and field density tests. As the result of the pilot tests, it shows that the dynamic compaction method is better than the hydraulic hammer compaction method in the effect of the ground improvement, especially dynamic compaction Type I is much superior to others. When it comes to method for measuring the intensity of the ground, the value of the cone penetration test-resistance(qc) is much suitable for the ground. Besides, the standards for the compaction control, which showed that over 10Mpa at 0 through 5meters in the upper layer and 7Mpa at 5 through 8meters in the lower layer in the CPT-qc, could be found without discrimination of the upper road and lower road on the reclaimed land. And it also found that the intensity of the reclaimed land gets back to the original status in about 10 through 15 days.

  • PDF

Strain-rate effects on interaction between Mode I matrix crack and inclined elliptic inclusion under dynamic loadings

  • Li, Ying;Qiu, Wan-Chao;Ou, Zhuo-Cheng;Duan, Zhuo-Ping;Huang, Feng-Lei
    • Structural Engineering and Mechanics
    • /
    • v.44 no.6
    • /
    • pp.801-814
    • /
    • 2012
  • The strain rate effects on the interaction between a Mode I matrix crack and an inclined elliptic matrix-inclusion interface under dynamic tensile loadings were investigated numerically, and the results are in agreement with previous experimental data. It is found, for a given material system, that there are the first and the second critical strain rates, by which three kinds of the subsequent crack growth patterns can be classified in turn with the increasing strain rate, namely, the crack deflection, the double crack mode and the perpendicular crack penetration. Moreover, such a crack deflection/penetration behavior is found to be dependent on the relative interfacial strength, the inclined angle and the inclusion size. In addition, it is shown that the so-called strain rate effect on the dynamic strength of granule composites can be induced directly from the structural dynamic response of materials, not be entirely an intrinsic material property.

Modal characteristics of partially perforated rectangular plate with triangular penetration pattern

  • Jhung, Myung J.;Jeong, Kyeong H.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.583-603
    • /
    • 2015
  • There are so many applications of perforated pates with various penetration patterns. If they are penetrated regularly, it can be represented by solid plate with equivalent material properties, which has a benefit of finite element modelling and reducing computation time for the analysis. Because the equivalent material properties suggested already are not proper to be applicable for the dynamic analysis, it is necessary to extract the equivalent material properties for the dynamic analysis. Therefore, in this study, the equivalent modulus of elasticity are obtained for the perforated plate with a triangular penetration pattern by comparing the natural frequencies of the perforated plate with those of solid plate, which are represented with respect to the ligament efficacy. Using the equivalent material properties suggested, the modal analyses of the partially perforated rectangular plate with a triangular penetration pattern are performed and its applicability is shown by comparing natural frequencies of perforated and homogeneous solid plates from finite element method and analytical method.

Correlation Analysis between DCPT Value and SPT Value (동적콘관입시험값과 표준관입시험값의 상관성 분석)

  • Lee, Bongjik;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.8
    • /
    • pp.23-30
    • /
    • 2014
  • In-situ penetration tests have been widely used in geotechnical engineering for site investigation in support of analysis and design. Standard Penetration Test (SPT) and Dynamic Cone Penetration Test (DCPT) are typical dynamic sounding. DCPT was originally developed as an alternative for evaluating the properties of subgrade soils. The main advantages of DCPT are that it is fast, inexpensive, and it is particularly useful in delineating areas of weak soils overlying stronger strata and in quickly assessing the variability of the soil conditions. But lack of standardization is main reason that this test method has not been advanced more in recent years. In this study, it is clarified the correlation with the SPT blow count, N from DCPT data using big DCP eqipment. Regression analysis and correlationship analysis were conducted with the data from relationship between SPT and DCPT. The analysis results showed that the convert fact are in the range of 1.12~1.31 with variation with soil property.

Characterization of railway substructure using a hybrid cone penetrometer

  • Byun, Yong-Hoon;Hong, Won-Taek;Lee, Jong-Sub
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1085-1101
    • /
    • 2015
  • Changes in substructure conditions, such as ballast fouling and subgrade settlement may cause the railway quality deterioration, including the differential geometry of the rails. The objective of this study is to develop and apply a hybrid cone penetrometer (HCP) to characterize the railway substructure. The HCP consists of an outer rod and an inner mini cone, which can dynamically and statically penetrate the ballast and the subgrade, respectively. An accelerometer and four strain gauges are installed at the head of the outer rod and four strain gauges are attached at the tip of the inner mini cone. In the ballast, the outer rod provides a dynamic cone penetration index (DCPI) and the corrected DCPI (CDCPI) with the energy transferred into the rod head. Then, the inner mini cone is pushed to estimate the strength of the subgrade from the cone tip resistance. Laboratory application tests are performed on the specimen, which is prepared with gravel and sandy soil. In addition, the HCP is applied in the field and compared with the standard dynamic cone penetration test. The results from the laboratory and the field tests show that the cone tip resistance is inversely proportional to the CDCPI. Furthermore, in the subgrade, the HCP produces a high-resolution profile of the cone tip resistance and a profile of the CDCPI in the ballast. This study suggests that the dynamic and static penetration tests using the HCP may be useful for characterizing the railway substructure.