• Title/Summary/Keyword: Dynamic observation

Search Result 389, Processing Time 0.027 seconds

Hybrid HMM for Transitional Gesture Classification in Thai Sign Language Translation

  • Jaruwanawat, Arunee;Chotikakamthorn, Nopporn;Werapan, Worawit
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1106-1110
    • /
    • 2004
  • A human sign language is generally composed of both static and dynamic gestures. Each gesture is represented by a hand shape, its position, and hand movement (for a dynamic gesture). One of the problems found in automated sign language translation is on segmenting a hand movement that is part of a transitional movement from one hand gesture to another. This transitional gesture conveys no meaning, but serves as a connecting period between two consecutive gestures. Based on the observation that many dynamic gestures as appeared in Thai sign language dictionary are of quasi-periodic nature, a method was developed to differentiate between a (meaningful) dynamic gesture and a transitional movement. However, there are some meaningful dynamic gestures that are of non-periodic nature. Those gestures cannot be distinguished from a transitional movement by using the signal quasi-periodicity. This paper proposes a hybrid method using a combination of the periodicity-based gesture segmentation method with a HMM-based gesture classifier. The HMM classifier is used here to detect dynamic signs of non-periodic nature. Combined with the periodic-based gesture segmentation method, this hybrid scheme can be used to identify segments of a transitional movement. In addition, due to the use of quasi-periodic nature of many dynamic sign gestures, dimensionality of the HMM part of the proposed method is significantly reduced, resulting in computational saving as compared with a standard HMM-based method. Through experiment with real measurement, the proposed method's recognition performance is reported.

  • PDF

Comparison of static MRI and pseudo-dynamic MRI in tempromandibular joint disorder patients (측두하악관절장애 환자에서의 static MRI와 pseudo-dynamic MRI의 비교연구)

  • Lee, Jin-Ho;Yun, Kyoung-In;Park, In-Woo;Choi, Hang-Moon;Park, Moon-Soo
    • Imaging Science in Dentistry
    • /
    • v.36 no.4
    • /
    • pp.199-206
    • /
    • 2006
  • Purpose: The purpose of this study was to evaluate comparison of static MRI and pseudo-dynamic (cine) MRI in temporomandibular joint (TMJ) disorder patients. Materials and Methods: In this investigation, 33 patients with TMJ disorders were examined using both conventional static MRI and pseudo-dynamic MRI. Multiple spoiled gradient recalled acquisition in the steady state (SPGR) images were obtained when mouth opened and closed. Proton density weighted images were obtained at the closed and open mouth position in static MRI. Two oral and maxillofacial radiologists evaluated location of the articular disk, movement of condyle and bony change respectively and the posterior boundary of articular disk was obtained. Results: No statistically significant difference was found in the observation of articular disk position, mandibular condylar movement and posterior boundary of articular disk using static MRI and pseudo-dynamic MRI (P<0.05). Statistically significant difference was noted in bony changes of condyle using static MRI and pseudo-dynamic MRI (P<0.05). Conclusion: This study showed that pseudo-dynamic MRI didn't make a difference in diagnosing internal derangement of TMJ in comparison with static MRI. But it was considered as an additional method to be supplemented in observing bony change.

  • PDF

OPTIMAL CONTROL PROBLEMS FOR PARABOLIC HEMIVARIATIONAL INEQUALITIES WITH BOUNDARY CONDITIONS

  • Jeong, Jin-Mun;Ju, Eun-Young;Kim, Hyun-Min
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.567-586
    • /
    • 2015
  • In this paper, we study optimal control problems for parabolic hemivariational inequalities of dynamic elasticity and investigate the continuity of the solution mapping from the given initial value and control data to trajectories. We show the existence of an optimal control which minimizes the quadratic cost function and establish the necessary conditions of optimality of an optimal control for various observation cases.

Observation of Nugget Formation Mechanism by using High Speed Camera (고속카메라를 이용한 저항 점 용접의 너겟 형성 메커니즘 관찰)

  • 조용준;이세헌
    • Proceedings of the KWS Conference
    • /
    • 2000.10a
    • /
    • pp.43-45
    • /
    • 2000
  • Resistance Spot Welding has been one of the important process in the sheet metal fabrication of auto-body industry It is well known that the nugget formation of RSW is the major factor for the strength of the body. A high speed camera was used to consider initial melting and growth of the weld nugget in order to find out the nugget formation mechanism. It was observed that such mechanism had an effect on the dynamic resistance, which was a process parameter of resistance spot welding. Also, the relationship between the mechanism and process parameter was considered for the industrial application.

  • PDF

A Model of Magnetic Bearings Considering Eddy Currents and Hysteresis

  • Myounggyu Noh
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.3
    • /
    • pp.5-11
    • /
    • 2003
  • A simulation model for radial magnetic bearings is presented. The model incorporates hysteresis, saturation and eddy current effects. A simple magnetization model that describes hysteresis and saturation is proposed. Eddy currents are taken into consideration by assuming that they are generated by single-turn fictitious coils wrapped around each magnetic flux path. The dynamic equations describing the simulation model can easily incorporate the operation of switching power amplifier. A simulation of a typical 8-pole radial magnetic bearing produces switching waveforms very similar to the experimental observation.

Statistical Correction of Numerical Model Forecasts for Typhoon Tracks

  • Sohn, Keon-Tae
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.295-304
    • /
    • 2005
  • This paper concentrates on the prediction of typhoon tracks using the dynamic linear model (DLM) for the statistical correction of the numerical model guidance used in the JMA. The DLM with proposed forecast strategy is applied to reduce their systematic errors using the latest observation. All parameters of the DLM are updated dynamically and backward forecasting is performed to remove the effect of initial values.

Wind Load Assumption of 765Kv Transmission Towers

  • Kim, Jeong-Boo
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.1
    • /
    • pp.45-50
    • /
    • 1996
  • This paper mainly describes the wind load assumption of 765kV transmission towers. We analyzed wind velocity data a meteorological observatories to get the wind velocity of 50 years return period by using Gumbel I type extreme value distribution. By multi-correlative regression analysis method, wind velocity at no observation site was obtained. Reference dynamics wind pressure map was obtained from above analysis and the wind pressure was classified as three regio in high temperature season.

  • PDF

Online Hop Timing Detection and Frequency Estimation of Multiple FH Signals

  • Sha, Zhi-Chao;Liu, Zhang-Meng;Huang, Zhi-Tao;Zhou, Yi-Yu
    • ETRI Journal
    • /
    • v.35 no.5
    • /
    • pp.748-756
    • /
    • 2013
  • This paper addresses the problem of online hop timing detection and frequency estimation of multiple frequency-hopping (FH) signals with antenna arrays. The problem is deemed as a dynamic one, as no information about the hop timing, pattern, or rate is known in advance, and the hop rate may change during the observation time. The technique of particle filtering is introduced to solve this dynamic problem, and real-time frequency and direction of arrival estimates of the FH signals can be obtained directly, while the hop timing is detected online according to the temporal autoregressive moving average process. The problem of network sorting is also addressed in this paper. Numerical examples are carried out to show the performance of the proposed method.

Biologically Inspired Approach for the Development of Quadruped Walking Robot (사족보행 로봇의 개발을 위한 생체모방적 접근)

  • Kang Tae-Hun;Song Hyun-Sup;Choi Hyouk-Ryeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.307-314
    • /
    • 2006
  • In this paper, we present a comprehensive study for the development of quadruped walking robot. To understand the walking posture of a tetrapod animal, we begin with a careful observation on the skeletal system of tertapod animals. From taking a side view of their skeletal system, it is noted that their fore limbs and hind limbs perform characteristic roles during walking. Moreover, the widths of footprints and energy efficiency in walking have a close relationship through taking a front view of their walking posture. According to these observations, we present a control method where the kinematical solutions are not necessary because we develop a new rhythmic gait pattern for the quadruped walking robot. Though the proposed control method and rhythmic pattern are simple, they can provide the suitable motion planning for the robot since the resultant movement is based on the animal's movements. The validity of the proposed idea is demonstrated through dynamic simulations.

Analysis of dynamic manipulability for multiple cooperating robot system based on matrix decomposition (행렬 Decomposition 방법에 기초한 다중협동 로봇의 동적 조작도 해석)

  • 이지홍;조복기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2705-2708
    • /
    • 2003
  • In this paper, we propose a method that applies matrix decomposition technique to the connection of actuator capabilities of each robot to object acceleration limits for multiple cooperative robot systems. The robot systems under consideration are composed of several robot manipulators and each robot contacts a single object to carry the object while satisfying the constraints described in kinematics as well as dynamics. By manipulating kinematic and dynamic equations of both robots and objects, we at first derive a matrix relating joint torques with object acceleration, manipulate the null space of the matrix, and then we decompose the matrix into three parts representing indeterminancy, connectivity, and redundancy. With the decomposed matrix we derive the boundaries of object accelerations from given joint actuators. To show the validity of the proposed method some examples are given in which the results can be expected by intuitive observation.

  • PDF