• Title/Summary/Keyword: Dynamic insulator

Search Result 43, Processing Time 0.025 seconds

A Laterally Driven Electromagnetic Microoptical Switch Using Lorentz force (로렌츠 힘을 이용한 평면구동형 마이크로 광스위치)

  • Han, Jeong-Sam;Ko, Jong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.195-201
    • /
    • 2005
  • A laterally driven electromagnetic microactuator (LaDEM) is presented, and a micro-optical switch is designed and fabricated as a possible application. LaDEM provides parallel actuation of the microactuator to the silicon substrate surface (in-plane mode) by the Lorentz force. Poly-silicon-on-insulator (Poly-SOI) wafers and a reactive ion etching (RIE) process were used to fabricate high-aspect-ratio vertical microstructures, which allowed the equipment of a vertical micro mirror. A fabricated arch-shaped leaf spring has a thickness of $1.8{\mu}m$, width of $16{\mu}m$, and length of $800{\mu}m$. The resistance of the fabricated structure fer the optical switch was approximately 5$\Omega$. The deflection of the leaf springs increases linearly up to about 400 mA and then it demonstrates a buckling behavior around the current value. Owing to this nonlinear phenomenon, a large displacement of $60{\mu}m$ could be measured at 566 mA. The displacement-load relation and some dynamic characteristics are analyzed using the finite element simulations.

Rotational Viscoelastic Dampers for the Mitigation of Wind Loads on Transmission Tower Transferred from Transmission Lines (송전선에 의해 송전철탑에 전달되는 풍하중 저감을 위한 회전형 점탄성감쇠기)

  • Moon, Byoung-Wook;Min, Kyung-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.420-427
    • /
    • 2006
  • In this study, wind loads transmitted to a transmission tower from transmission lines are mitigated using rotational viscoelastic dampers. First, the wind load characteristics in a transmission tower is investigated considering the effect of the transmission lines through stochastic analysis. The assemblage of the transmission line and insulator are modeled as a double pendulum system connected to the SDOF model of the tower. From the result of the stochastic analysis, the background component of the overturing moment caused by the wind loads acting on the transmission lines are found to have considerable portion in the total overturning moment. Based on this observation result, a strategy Installing rotational viscoelastic damper (VED) between tower arm and transmission line is proposed for the mitigation of the transmission line reactions, which play a role as dynamic loads on a transmission tower. For the purpose of verification, time history analysis is conducted for different wind velocities and VED parameters. The analysis result shows that the rotational VED is effective for the mitigation of the background component rather than the resonance component of the transmission line reactions and achieves the reduction ratio of 50% even for higher wind speed.

Channel Recessed 1T-DRAM with ONO Gate Dielectric

  • Park, Jin-Gwon;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.264-264
    • /
    • 2011
  • 1T-1C로 구성되는 기존의 dynamic random access memory (DRAM)는 데이터를 저장하기 위해 적절한 커패시턴스를 확보해야 한다. 따라서 커패시터 면적으로 인한 집적도의 한계에 직면해있으며, 이를 대체하기 위한 새로운 DRAM인 1T- DRAM이 연구되고 있다. 기존의 DRAM과 달리 silicon-on-insulator (SOI) 기술을 이용한 1T-DRAM은 데이터 저장을 위한 커패시터가 요구되지 않는다. 정공을 채널의 중성영역에 축적함으로서 발생하는 포텐셜 변화를 이용하며, 이때 발생하는 드레인 전류차를 이용하여 '0'과 '1'을 구분한다. 기존의 완전공핍형 평면구조의 1T-DRAM은 소스 및 드레인 접합부분에서 발생하는 누설전류로 인해 '0' 상태의 메모리 유지특성이 열화되는 단점을 가지고 있다. 따라서 메모리의 보존특성을 향상시키기 위해 소스/드레인 접합영역을 줄여 누설전류를 감소시키는 구조를 갖는 1T-DRAM의 연구가 필요하다. 또한 고유전율을 가지는 Si3N4를 이용한 oxide-nitride-oxide (ONO)구조의 게이트 절연막을 이용하면 동일한 두께에서 더 낮은 equivalent oxide thickness (EOT)를 얻을 수 있기 때문에 보다 저 전압에서 1T-DRAM 동작이 가능하여 기존의 SiO2 단일층을 이용한 1T-DRAM보다 동일 전압에서 더 큰 sensing margin을 확보할 수 있다. 본 연구에서는 누설전류를 감소시키기 위하여 소스 및 드레인이 채널위로 올려진 recessed channel 구조에 ONO 게이트 절연막을 적용한 1T-DRAM을 제작 및 평가하고, 본 구조의 1T-DRAM적용 가능성 및 ONO구조의 게이트 절연막을 이용한 sensing margin 개선을 확인하였다.

  • PDF

다결정 실리콘 박막트랜지스터 1T-DRAM에 관한 연구

  • Park, Jin-Gwon;Jo, Won-Ju;Jeong, Hong-Bae;Lee, Yeong-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.109-109
    • /
    • 2011
  • 1T-1C로 구성되는 기존의 DRAM(Dynamic Random Access Memory)은 데이터를 저장하기 위한 적절한 capacitance를 확보해야 한다. 따라서 캐패시터 면적으로 인한 집적도에 한계에 직면해있다. 따라서 이를 대체하기 위한 새로운 DRAM인 1T (Transistor) DRAM이 각광받고 있다. 기존의 DRAM과 달리 SOI (Silicon On Insulator)기술을 이용한 1T-DRAM은 데이터 저장을 위한 캐패시터가 필요없다. Impact Ionization 또는 GIDL을 이용해 발생한 정공을 채널영역에 가둠으로 서 발생하는 포텐셜 변화를 이용한다. 이로서 드레인 전류가 변화하며, 이를 이용해 '0'과 '1'을 구분한다. 기존의 1T-DRAM은 단결정 실리콘을 이용하여 개발되었으나 좀더 광범위한 디바이스로의 적용을 위해서는 다결정 실리콘 박막의 형태로 제작이 필수적이다. 단결정 실리콘을 이용할 경우 3차원 집적이나 기판재료선택에 제한적이지만 다결정 실리콘을 이용할 경우, 기판결정이 자유로우며 실리콘 박막이나 매몰 산화층의 형성 및 두께 조절이 용이하다. 때문에 3차원 적층에 유리하여 다결정 실리콘 박막 형태의 1T-DRAM 제작이 요구되고 있다. 따라서 이번연구에서는 엑시머 레이저 어닐링 및 고상결정화 방법을 이용하여 결정화 시킨 다결정 실리콘을 이용하여 1T-DRAM을 제작하였으며 메모리 특성을 확인하였다. 기판은 상부실리콘 100 nm, buried oxide 200 nm로 구성된 SOI구조의 기판을 사용하였다. 엑시머 레이저 어닐링의 경우 400 mJ/cm2의 에너지를 가지는 KrF 248 nm 엑시머 레이저 이용하여 결정화시켰으며, 고상결정화 방법은 $400^{\circ}C$ 질소 분위기에서 24시간 열처리하여 결정화 시켰다. 두가지 결정화 방법을 사용하여 제작되어진 박막트랜지스터 1T-DRAM 모두 kink 현상을 확인할 수 있었으며 메모리 특성 역시 확인할 수 있었다.

  • PDF

Basic Issues in SOI Technology : Device Properties and Processes and Wafer Fabrication (SOI 기술의 이해와 고찰: 소자 특성 및 공정, 웨이퍼 제조)

  • Choe, Kwang-Su
    • Korean Journal of Materials Research
    • /
    • v.15 no.9
    • /
    • pp.613-619
    • /
    • 2005
  • The ever increasing popularity and acceptance in the market place of portable systems, such as cell phones, PDA, notebook PC, etc., are fueling effects in further miniaturizing and lowering power consumption in these systems. The dynamic power consumption due to the CPU activities and the static power consumption due to leakage currents are two major sources of power consumption. Smaller devices and a lower de voltage lead to reducing the power requirement, while better insulation and isolation of devices lead to reducing leakage currents. All these can be harnessed in the SOI (silicon-on-insulator) technology. In this study, the key aspects of the SOI technology, mainly device electrical properties and device processing steps, are briefly reviewed. The interesting materials issues, such as SOI structure formation and SOI wafer fabrication methods, are then surveyed. In particular, the recent technological innovations in two major SOI wafer fabrication methods, namely wafer bonding and SIMOX, are explored and compared in depth. The results of the study are nixed in that, although the quality of the SOI structures has shown great improvements, the processing steps are still found to be too complex. Between the two methods, no clear winner has yet emerged in terms of the product quality and cost considerations.

Performance Analysis of a Vibrating Microgyroscope using Angular Rate Dynamic Model (진동형 마이크로 자이로스코프의 각속도 주파수 동역학적 모델의 도출 및 성능 해석)

  • Hong, Yoon-Shik;Lee, Jong-Hyun;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.89-97
    • /
    • 2001
  • A microgyroscope, which vibrates in two orthogonal axes on the substrate plane, is designed and fabricated. The shuttle mass of the vibrating gyroscope consists of two parts. The one is outer shuttle mass which vibrates in driving mode guided by four folded springs attached to anchors. And the other is inner shuttle mass which vibrates in driving mode as the outer frame does and also can vibrate in sensing mode guided by four folded springs attached to the outer shuttle mass. Due to the directions of vibrating mode, it is possible to fabricate the gyroscope with simplified process by using polysilicon on insulator structure. Fabrication processes of the microgyroscope are composed of anisotropic silicon etching by RIE, gas-phase etching (GPE) of the buried sacrificial oxide layer, metal electrode formation. An eletromechanical model of the vibrating microgyroscope was modeled and bandwidth characteristics of the gyroscope operates at DC 4V and AC 0.1V in a vacuum chamber of 100mtorr. The detection circuit consists of a discrete sense amplifier and a noise canceling circuit. Using the evaluated electromechanical model, an operating condition for high performance of the gyroscope is obtained.

  • PDF

A Study of Cooling and Heating Load Changes with Roof Type Solar Panels Installed on Factory Roof (지붕형 태양광발전 패널의 공장 지붕 설치에 따른 냉방 및 난방 부하 변화량 연구)

  • Jo, Ho-Hyeon;Kim, Jung-Min;Kim, Young Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.4
    • /
    • pp.9-15
    • /
    • 2020
  • In this study, effect of reinforced insulation on heating and cooling loads were studied due to installation of PV panels on factory building roof with a floor area of 12,960 m2. For PV panel installation, combination of aluminum, polyurethane, air, polystyrene and steel materials were added to the original roof, which increased thermal insulation performance. Half of the roof were covered with PV panel and the other half without. Temperature and relative humidity were measured for 8 days during summer season for both indoor spaces. PV panel showed the effect of lowering the indoor space temperature by 0.6℃. TRNSYS dynamic simulation showed that with PV panel, cooling load per area is reduced by 1.7 W/m2 and heating by 10.0 W/m2. PV panels installed on building roof not only generate electricity but also can save energy by reducing cooling and heating loads.

Seismic Analysis of the Reflective Metal Insulation for Thermal Shielding of Main Equipments of Nuclear Power Plants (원전 설비 열차폐를 위한 반사형 금속단열재의 내진 해석)

  • Kim, Seung-Hyeon;Rhee, Huinam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.166-172
    • /
    • 2016
  • This paper deals with the seismic qualification of the reflective metal insulation for thermal shielding that is installed on the outer surfaces of the main equipment of the primary coolant system of a nuclear power plant. A small-scale model of the reactor pressure vessel, which has equivalent dynamic characteristics, was designed to be tested in domestic seismic testing facilities in the future. In this study, seismic analysis of the small-scale model installed with metal insulation was performed using equivalent static analysis and response spectrum analysis. The required Response Spectrum for main equipment of the primary coolant system of APR-1400 plant were considered to establish the enveloping response spectrum, which was applied to the seismic analysis model. The results from two seismic analysis methods were compared to show the structural adequacy of the metal insulator design against a safe shutdown earthquake. This study will form the basis for the seismic testing to support the seismic qualification of the reflective metal insulator.

Dynamic Analysis and Evaluation of a Microgyroscope using Symmetric 2DOF Planar Resonator (대칭형 2자유도 수평 공진기를 이용한 마이크로 자이로스코프의 동특성 해석 및 평가)

  • Hong, Yoon-Shik;Lee, Jong-Hyun;Kim, Soo-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Conventional microgyroscopes of vibrating type require resonant frequency tuning of the driving and sensing modes to achieve high sensitivity. These tuning conditions depend on each fabricated microgyroscopes, even though the microgyroscopes are identically designed. A new micromachined resonator, which is applicable to microgyroscopes with self-toning characteristics, is presented. Since the laterally driven two degrees of freedom (2DOF) resonator was designed as a symmetric structure with identical stiffness in two orthogonal axes, the resonator is applicable to vibrating microgyroscopes, which do not need mode tuning. A dynamic model of the resonator was derived considering gyroscopic application. The dynamic model was evaluated by experimental comparison with fabricated resonators. The microgyroscopes were fabricated using a simple 2-mask-process of a single polysilicon layer deposited on an insulator layer. The feasibility of the resonator as a vibrating microgyroscopes with self-tuning capability is discussed. The fabricated resonators of a particular design have process-induced non-uniformities that cause different resonant frequencies. For several resonators, the standard deviations of the driving and sensing frequencies were as high as 1232Hz and 1214Hz, whereas the experimental average detuning frequency was 91.75Hz. The minimum detuned frequency was 68Hz with $0.034mVsec/^{\circ}$ sensitivity. The sensitivity of the microgyroscopes was low due to process-induced non-uniformity; the angular rate bandwidth, however, was wide. This resonator could be successfully applicable to a vibrating microgyroscopes with high sensitivity, if improvements in uniformity of the fabrication process are achieved. Further developments in improved integrated circuits are expected to lower the noise level even more.

  • PDF

High Performance of SWIR HgCdTe Photovoltaic Detector Passivated by ZnS

  • Lanh, Ngoc-Tu;An, Se-Young;Suh, Sang-Hee;Kim, Jin-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.128-132
    • /
    • 2004
  • Short wave infrared (SWIR) photovoltaic devices have been fabricated from metal organic vapour phase epitaxy (MOVPE) grown n- on p- HgCdTe films on GaAs substrates. The MOVPE grown films were processed into mesa type discrete devices with wet chemical etching employed for meas delineation and ZnS surface passivatlon. ZnS was thermally evaporated from effusion cell in an ultra high vacuum (UHV) chamber. The main features of the ZnS deposited from effusion cell in UHV chamber are low fixed surface charge density, and small hysteresis. It was found that a negative flat band voltage with -0.6 V has been obtained for Metal Insulator Semiconductor (MIS) capacitor which was evaporated at $910^{\circ}C$ for 90 min. Current-Voltage (I-V) and temperature dependence of the I-V characteristics were measured in the temperature range 80 - 300 K. The Zero bias dynamic resistance-area product ($R_{0}A$) was about $7500{\Omega}-cm^{2}$ at room temperature. The physical mechanisms that dominate dark current properties in the HgCdTe photodiodes are examined by the dependence of the $R_{0}A$ product upon reciprocal temperature. From theoretical considerations and known current expressions for thermal and tunnelling process, the device is shown to be diffusion limited up to 180 K and g-r limited at temperature below this.