• Title/Summary/Keyword: Dynamic ingestion pathways

Search Result 5, Processing Time 0.023 seconds

Analysis of Exposure Pathways and the Relative Importance of Radionuclides to Radiation Exposure in the Case of a Severe Accident of a Nuclear Power Plant (원전 중대사고시 피폭경로 및 핵종의 방사선 피폭에 대한 상대적 중요도 해석)

  • Hwang, Won-Tae;Suh, Kyung-Suk;Kim, Eun-Han;Han, Moon-Hee;Kim, Byung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.19 no.3
    • /
    • pp.209-221
    • /
    • 1994
  • In the case of a severe accident of a nuclear power plant, the whole body dose and the relative importance of the radionuclides during the lifetime of an exposed person were estimated for each exposure pathway with distances from the release point. The external exposure pathways due to immersion of radioactive cloud and deposition of radioactive materials on the ground, and the internal exposure pathways due to inhalation and ingestion of contaminated foodstuffs were considered. The effects due to the ingestion of contaminated foodstuffs were estimated considering the variation of radioactive concentration in the foodstuffs according to deposition time and elapsed time after deposition using a dynamic ingestion pathway model applicable to Korean environment, named 'KORFOOD'. As the results up to 80 km from the release point, the effects due to ingestion of contaminated foodstuffs showed the highest contribution to total exposure dose. The contribution of I isotopes was the highest in the case of the external dose due to immersion of radioactive cloud and internal dose due to inhalation. The contribution of Cs isotopes was highest in the case of the external dose due to deposition of radioactive materials on the ground. In the case of the internal dose due to ingestion of contaminated foodstuffs, Cs deposition in summer and Sr deposition in winter, respectively, were the most dominant radionuclide to whole body.

  • PDF

Contaminative Influence of Beef Due to the Inhalation of Air and the Ingestion of Soil of Livestock from an Acute Release of Radioactive Materials (원자력시설의 사고시 가축의 공기 흡입과 토양 섭취가 육류의 방사능 요염에 미치는 영향)

  • 황원태;김은한;서경석;정효준;한문희
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.3
    • /
    • pp.181-188
    • /
    • 2004
  • The contaminative influence of beef due to the inhalation of air and the ingestion of soil of livestock, both of which are dealt with as minor contaminative pathways in most radioecological models but may not be neglected, was comprehensively investigated with the improvement of the Korean food chain model DYNACON. As the results, it was found that both pathways can not be neglected at all in the contamination of beef in the case of an accidental release during the non-grazing period of livestock. The ingestion of soil was more influential in the contamination of beef than the inhalation of air over most time following an release. If precipitation is encountered during an accidental release, contaminative influence due to the ingestion of soil was far greater compared with the cases of no precipitation. This fact was more distinct for a long-lived radionuclide $^{l37}Cs$ than a short-lived radionuclide $^{131}I$ (elemental iodine). Compared with the results for milk performed prior to this study, the contaminative pathways due to the inhalation of air and the ingestion of soil were more important in beef because of longer biological half-lives. On the other hand, in the case of an accidental release during the grazing period of livestock, radioactive contamination due to the ingestion of pasture was dominant irrespective of the existence of precipitation during an accidental release. It means that contaminative influence due to the inhalation of air and the ingestion of soil is negligible, like the cases of milk.

  • PDF

Predictive Contamination of Animal Products Due th the Inhalation of Air and the Ingestion of Soil of Cattle in an Accidental Release of Radioactive Materials - Focusing on Contaminative Influence for Milk (원자력 사고시 가축의 공기 흡입과 토양 섭취에 의한 축산물의 오염 - 우유에 대한 오염 영향을 중심으로)

  • Hwang, Won-Tae;Kim, Eun-Han;Suh, Kyung-Suk;Jeong, Hyo-Joon;Han, Moon-Hee;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.4
    • /
    • pp.299-309
    • /
    • 2003
  • In an accidental release of radioactive materials to the environment the contaminative influence of animal products due to the inhalation of air and the ingestion of soil of livestock, both of which are dealt with as minor contaminative pathways in most radioecological models but may not be neglected, was investigated with the improvement of the Korean dynamic food chain model DYNACON Although mathematical models for both contaminative pathways have been established for considering all animal products and incorporated into the model, investigation was limited to milk. As a result, it was found that both pathways are influential in the contamination of milk in the case of an accidental release during the non-grazing period of dairy cows. In the case of an accidental release during the non-grazing period, the inhalation of air was more influential than the ingestion of soil in the early days following an accidental release. While, it was the opposite with the lapse of time. If precipitation is encountered during an accidental release, contaminative influence due to the ingestion of soil was greater compared with the cases of no precipitation, in general, because of a stealer deposition of radionuclides onto the ground. Precipitation during an accidental release was a less influential factor in $^{131}I$ (elemental iodine) contamination compared with the $^{137}Cs\;and\;^{90}Sr$ contaminations. In the case of an accidental release during the grazing period of dairy cows, the contaminative influence due to the inhalation of air was negligible.

Development of a Dynamic Ingestion Pathways Model(KORFOOD), Applicable to Korean Environment (한국 환경에 적용 가능한 동적 섭식경로 모델 (KORFOOD) 개발)

  • Hwang, Won-Tae;Kim, Byung-Woo;Lee, Kun-Jai
    • Journal of Radiation Protection and Research
    • /
    • v.18 no.1
    • /
    • pp.9-24
    • /
    • 1993
  • The time-dependent radioecological model applicable to Korean environment has been developed in order to assess the radiological consequences following the short-term deposition of radionuclides in an accident of nuclear power plant. Time-dependent radioactivity concentrations in foodstuffs can be estimated by the model called 'KORFOOD' as well as time-dependent and time-integrated ingestion doses. Three kinds of critical radionuclides and thirteen kinds of foodstuffs were considered in this model. Dynamic variation of radioactivities were simulated by considering several effects such as deposition, weathering and washout, resuspension, root uptake, translocation, leaching, senescence, intake and excretion of soil by animals, intake and excretion of feedstuffs by animals, etc. The input data to the KORFOOD are the time of the year when the deposition occurs, the kinds of radionuclides and foodstuffs for estimation. The time-dependent specific activities in rice and the ingestion doses due to the consumption of all considered foodstuffs were calculated with deposition time using agricultural data-base in Kori region. In order to validate results of KORFOOD, the calculated results were compared with those by a leading German model, ECOSYS-87. The comparison of results shows good agreements within a factor of ten.

  • PDF

A Study on the Application of Countermeasure for the Reduction of the Ingestion Dose After Nuclear Accidents

  • Hwang, Won-Tae;Suh, Kyung-Suk;Kim, Eun-Han;Park, Young-Gil;Han, Moon-Hee;Gyuseong Cho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.583-588
    • /
    • 1998
  • The effectiveness of dose reduction resulting from the application of countermeasures for ingestion pathways after nuclear accidents was investigated together with the derivation of optimized intervention levels for Korean foodstuffs. The radioactivity in foodstuffs was predicted from a dynamic food chain model DYNACON for the date which the deposition occurs. The effectiveness of countermeasures strongly depended on radionuclides, foodstuffs and date of deposition.

  • PDF