• Title/Summary/Keyword: Dynamic imaging

Search Result 494, Processing Time 0.023 seconds

A Wide Dynamic Range NUC Algorithm for IRCS Systems

  • Cai, Li-Hua;He, Feng-Yun;Chang, Song-Tao;Li, Zhou
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1821-1826
    • /
    • 2018
  • Uniformity is a key feature of state-of-the-art infrared focal planed array (IRFPA) and infrared imaging system. Unlike traditional infrared telescope facility, a ground-based infrared radiant characteristics measurement system with an IRFPA not only provides a series of high signal-to-noise ratio (SNR) infrared image but also ensures the validity of radiant measurement data. Normally, a long integration time tends to produce a high SNR infrared image for infrared radiant characteristics radiometry system. In view of the variability of and uncertainty in the measured target's energy, the operation of switching the integration time and attenuators usually guarantees the guality of the infrared radiation measurement data obtainted during the infrared radiant characteristics radiometry process. Non-uniformity correction (NUC) coefficients in a given integration time are often applied to a specified integration time. If the integration time is switched, the SNR for the infrared imaging will degenerate rapidly. Considering the effect of the SNR for the infrared image and the infrared radiant characteristics radiometry above, we propose a-wide-dynamic-range NUC algorithm. In addition, this essasy derives and establishes the mathematical modal of the algorithm in detail. Then, we conduct verification experiments by using a ground-based MWIR(Mid-wave Infared) radiant characteristics radiometry system with an Ø400 mm aperture. The experimental results obtained using the proposed algorithm and the traditional algorithm for different integration time are compared. The statistical data shows that the average non-uniformity for the proposed algorithm decreased from 0.77% to 0.21% at 2.5 ms and from 1.33% to 0.26% at 5.5 ms. The testing results demonstrate that the usage of suggested algorithm can improve infrared imaging quality and radiation measurement accuracy.

Prognostic Prediction Based on Dynamic Contrast-Enhanced MRI and Dynamic Susceptibility Contrast-Enhanced MRI Parameters from Non-Enhancing, T2-High-Signal-Intensity Lesions in Patients with Glioblastoma

  • Sang Won Jo;Seung Hong Choi;Eun Jung Lee;Roh-Eul Yoo;Koung Mi Kang;Tae Jin Yun;Ji-Hoon Kim;Chul-Ho Sohn
    • Korean Journal of Radiology
    • /
    • v.22 no.8
    • /
    • pp.1369-1378
    • /
    • 2021
  • Objective: Few attempts have been made to investigate the prognostic value of dynamic contrast-enhanced (DCE) MRI or dynamic susceptibility contrast (DSC) MRI of non-enhancing, T2-high-signal-intensity (T2-HSI) lesions of glioblastoma multiforme (GBM) in newly diagnosed patients. This study aimed to investigate the prognostic values of DCE MRI and DSC MRI parameters from non-enhancing, T2-HSI lesions of GBM. Materials and Methods: A total of 76 patients with GBM who underwent preoperative DCE MRI and DSC MRI and standard treatment were retrospectively included. Six months after surgery, the patients were categorized into early progression (n = 15) and non-early progression (n = 61) groups. We extracted and analyzed the permeability and perfusion parameters of both modalities for the non-enhancing, T2-HSI lesions of the tumors. The optimal percentiles of the respective parameters obtained from cumulative histograms were determined using receiver operating characteristic (ROC) curve and univariable Cox regression analyses. The results were compared using multivariable Cox proportional hazards regression analysis of progression-free survival. Results: The 95th percentile value (PV) of Ktrans, mean Ktrans, and median Ve were significant predictors of early progression as identified by the ROC curve analysis (area under the ROC curve [AUC] = 0.704, p = 0.005; AUC = 0.684, p = 0.021; and AUC = 0.670, p = 0.0325, respectively). Univariable Cox regression analysis of the above three parametric values showed that the 95th PV of Ktrans and the mean Ktrans were significant predictors of early progression (hazard ratio [HR] = 1.06, p = 0.009; HR = 1.25, p = 0.017, respectively). Multivariable Cox regression analysis, which also incorporated clinical parameters, revealed that the 95th PV of Ktrans was the sole significant independent predictor of early progression (HR = 1.062, p < 0.009). Conclusion: The 95th PV of Ktrans from the non-enhancing, T2-HSI lesions of GBM is a potential prognostic marker for disease progression.

Myocardial Blood Flow Quantified by Low-Dose Dynamic CT Myocardial Perfusion Imaging Is Associated with Peak Troponin Level and Impaired Left Ventricle Function in Patients with ST-Elevated Myocardial Infarction

  • Jingwei Pan;Mingyuan Yuan;Mengmeng Yu;Yajie Gao;Chengxing Shen;Yining Wang;Bin Lu;Jiayin Zhang
    • Korean Journal of Radiology
    • /
    • v.20 no.5
    • /
    • pp.709-718
    • /
    • 2019
  • Objective: To investigate the association of myocardial blood flow (MBF) quantified by dynamic computed tomography (CT) myocardial perfusion imaging (MPI) with troponin level and left ventricle (LV) function in patients with ST-segment elevated myocardial infarction (STEMI). Materials and Methods: Thirty-five STEMI patients who successfully had undergone reperfusion treatment within 1 week of their infarction were consecutively enrolled. All patients were referred for dynamic CT-MPI. Serial high-sensitivity troponin T (hs-TnT) levels and left ventricular ejection fraction (LVEF) measured by echocardiography were recorded. Twenty-six patients with 427 segments were included for analysis. Various quantitative parameters derived from dynamic CT-MPI were analyzed to determine if there was a correlation between hs-TnT levels and LVEF on admission and again at the 6-month mark. Results: The mean radiation dose for dynamic CT-MPI was 3.2 ± 1.1 mSv. Infarcted territories had significantly lower MBF (30.5 ± 7.4 mL/min/100 mL versus 73.4 ± 8.1 mL/min/100 mL, p < 0.001) and myocardial blood volume (MBV) (2.8 ± 0.9 mL/100 mL versus 4.2 ± 1.1 mL/100 mL, p = 0.044) compared with those of reference territories. MBF showed the best correlation with the level of peak hs-TnT (r = -0.682, p < 0.001), and MBV showed a moderate correlation with the level of peak hs-TnT (r = -0.437, p = 0.026); however, the other parameters did not show any significant correlation with hs-TnT levels. As for the association with LV function, only MBF was significantly correlated with LVEF at the time of admission (r = 0.469, p = 0.016) and at 6 months (r = 0.585, p = 0.001). Conclusion: MBF quantified by dynamic CT-MPI is significantly inversely correlated with the level of peak hs-TnT. In addition, patients with lower MBF tended to have impaired LV function at the time of their admission and at 6 months.

CT Fractional Flow Reserve for the Diagnosis of Myocardial Bridging-Related Ischemia: A Study Using Dynamic CT Myocardial Perfusion Imaging as a Reference Standard

  • Yarong Yu;Lihua Yu;Xu Dai;Jiayin Zhang
    • Korean Journal of Radiology
    • /
    • v.22 no.12
    • /
    • pp.1964-1973
    • /
    • 2021
  • Objective: To investigate the diagnostic performance of CT fractional flow reserve (CT-FFR) for myocardial bridging-related ischemia using dynamic CT myocardial perfusion imaging (CT-MPI) as a reference standard. Materials and Methods: Dynamic CT-MPI and coronary CT angiography (CCTA) data obtained from 498 symptomatic patients were retrospectively reviewed. Seventy-five patients (mean age ± standard deviation, 62.7 ± 13.2 years; 48 males) who showed myocardial bridging in the left anterior descending artery without concomitant obstructive stenosis on the imaging were included. The change in CT-FFR across myocardial bridging (ΔCT-FFR, defined as the difference in CT-FFR values between the proximal and distal ends of the myocardial bridging) in different cardiac phases, as well as other anatomical parameters, were measured to evaluate their performance for diagnosing myocardial bridging-related myocardial ischemia using dynamic CT-MPI as the reference standard (myocardial blood flow < 100 mL/100 mL/min or myocardial blood flow ratio ≤ 0.8). Results: ΔCT-FFRsystolic (ΔCT-FFR calculated in the best systolic phase) was higher in patients with vs. without myocardial bridging-related myocardial ischemia (median [interquartile range], 0.12 [0.08-0.17] vs. 0.04 [0.01-0.07], p < 0.001), while CT-FFRsystolic (CT-FFR distal to the myocardial bridging calculated in the best systolic phase) was lower (0.85 [0.81-0.89] vs. 0.91 [0.88-0.96], p = 0.043). In contrast, ΔCT-FFRdiastolic (ΔCT-FFR calculated in the best diastolic phase) and CT-FFRdiastolic (CT-FFR distal to the myocardial bridging calculated in the best diastolic phase) did not differ significantly. Receiver operating characteristic curve analysis showed that ΔCT-FFRsystolic had largest area under the curve (0.822; 95% confidence interval, 0.717-0.901) for identifying myocardial bridging-related ischemia. ΔCT-FFRsystolic had the highest sensitivity (91.7%) and negative predictive value (NPV) (97.8%). ΔCT-FFRdiastolic had the highest specificity (85.7%) for diagnosing myocardial bridging-related ischemia. The positive predictive values of all CT-related parameters were low. Conclusion: ΔCT-FFRsystolic reliably excluded myocardial bridging-related ischemia with high sensitivity and NPV. Myocardial bridging showing positive CT-FFR results requires further evaluation.

DIAGNOSTIC RELIABILITY OF THE DYNAMIC MRI FOR THE INTERNAL DERANGEMENT OF TEMPORO-MANDIBULAR JOINTS (악관절내장증의 진단에 있어 Dynamic MRI의 효용)

  • Park, Chang-Hwan;Kim, Myung-Rae;Kim, Sun-Jong;Cheong, Eun-Chul
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.16 no.3
    • /
    • pp.273-280
    • /
    • 1994
  • The Magnetic Resonance Imaging has been used widely to evaluate the disk position without any interruption of the TMJ structures, and the Dynamic MRI presenting computed serial imaging or the video-recorded simulation images is thought to be very effective to evaluate the disk position under function. This is to study the correlation between the clinical diagnosis and the findings of Dynamic MRI for the diagnosis of internal derangement of the temporomandibular joints. 30 joints(15 patients) were examined clinically, and the movement of TMJ meniscus was reviewed in the dynamic MRI. The comparative results are as follows : 1. All internal derangements of TMJ disk displacement without reduction were consistent with MRI findings. 2. 5 joints (50%) of disk displacements with reduction could not be confirmed by MRI findings. 3. The disk displacements in MRI were found in 55% of painful joints, 50% of clicking joints, and 70% of the joints with restricted movement. 4. The reliability of MRI for the diagnosis of TMD was evaluated as 77% ; 24 of 30 joints who presented with clinical diagnosis of TMD. 5. MRI is very reliable to diagnose the disk displacement without reduction, but it is rather not so effective to diagnose the early derangement or muscle disorders.

  • PDF

Postoperative Chylothorax: the Use of Dynamic Magnetic Resonance Lymphangiography and Thoracic Duct Embolization

  • Lee, Chae Woon;Koo, Hyun Jung;Shin, Ji Hoon;Kim, Mi young;Yang, Dong Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.3
    • /
    • pp.182-186
    • /
    • 2018
  • Dynamic enhanced magnetic resonance lymphangiography can be used to provide anatomic and dynamic information for various lymphatic diseases, including thoracic duct injury, and can also help to guide the thoracic duct embolization procedure. We present a case of postoperative chylothorax demonstrated by dynamic enhanced MR lymphangiography. In this case, the chyle leakage site and location of cisterna chyli were clearly visualized by dynamic enhanced MR lymphangiography, thus allowing for management with thoracic duct embolization.

Digitalized Dynamic Fashion Design: Graphical Patterns in Motion

  • Choi, Kyung-Hee
    • Fashion & Textile Research Journal
    • /
    • v.21 no.4
    • /
    • pp.420-431
    • /
    • 2019
  • This paper evaluates the potential of dynamic graphical patterns in future-driven fashion design using computer graphics that enables changes to the visual appearance of a textile for aesthetic, expressive or communicative purposes. In particular, it focuses on experimenting with the possibility of creating digitalized dynamic fashion garments that are illustrated digitally using motion graphics developed collaboratively in a virtual space. Three objectives were formed and addressed. First, a dynamic graphical pattern was defined that also investigated the cases of tangible and virtual dynamic patterns in textiles and garments to identify current situations and future prospects in terms of functional techniques and expressive effects. Ten digital fashion illustrations were then created in collaboration with a group of graphic designers and motion artists to visualize dynamic graphical patterns changing over time. Four types of dynamic fashion illustrations were also introduced in their methodological and expressive aspects. Last, some findings resulted from digital works that led to implications for future studies on tangible dynamic fashion designs. This study proposed that computer graphics and digital imaging technologies integrated into a virtual fashion that creates eye-catching and futuristic dynamic fashion designs that can customize colors and patterns according to the desires of wearers or users.

Development of Wall Flow Sensor Using Micro Imaging Device (미세 영상 장치를 이용한 벽면 유동 센서 개발)

  • Lee, Seung Hwan;Kim, Byung Soo;Kim, Hyoung-Bum
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1217-1222
    • /
    • 2012
  • A wall flow sensor has been used for feedback flow control and wall shear stress measurement. In this study, we developed a new wall flow sensor by combining the PIV algorithm and the micro image sensor used in an optical mouse. The feasibility of the wall flow sensor was investigated by using simulated fluid flow experiments. Compared with the quadrature signal from imaging devices, the accuracy of the wall flow velocity measurement was improved and the dynamic range increased. In addition, the depth information of particles was also measured by using the defocusing imaging technique.

Optical Biopsy of Peripheral Nerve Using Confocal Laser Endomicroscopy: A New Tool for Nerve Surgeons?

  • Crowe, Christopher S;Liao, Joseph C;Curtin, Catherine M
    • Archives of Plastic Surgery
    • /
    • v.42 no.5
    • /
    • pp.626-629
    • /
    • 2015
  • Peripheral nerve injuries remain a challenge for reconstructive surgeons with many patients obtaining suboptimal results. Understanding the level of injury is imperative for successful repair. Current methods for distinguishing healthy from damaged nerve are time consuming and possess limited efficacy. Confocal laser endomicroscopy (CLE) is an emerging optical biopsy technology that enables dynamic, high resolution, sub-surface imaging of live tissue. Porcine sciatic nerve was either left undamaged or briefly clamped to simulate injury. Diluted fluorescein was applied topically to the nerve. CLE imaging was performed by direct contact of the probe with nerve tissue. Images representative of both damaged and undamaged nerve fibers were collected and compared to routine H&E histology. Optical biopsy of undamaged nerve revealed bands of longitudinal nerve fibers, distinct from surrounding adipose and connective tissue. When damaged, these bands appear truncated and terminate in blebs of opacity. H&E staining revealed similar features in damaged nerve fibers. These results prompt development of a protocol for imaging peripheral nerves intraoperatively. To this end, improving surgeons' ability to understand the level of injury through real-time imaging will allow for faster and more informed operative decisions than the current standard permits.

Primary Diffuse Large B-Cell Lymphoma of the Seminal Vesicle: a Case Report

  • Kwag, Kyung Su;Jang, Suk Ki;Yeon, Jae Woo;Kwon, Kye-Won;Son, Jeong Hwan;Kim, Hyuk Jung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.4
    • /
    • pp.259-263
    • /
    • 2016
  • Primary diffuse large B-cell lymphoma of the seminal vesicle is an extremely rare disorder, with only two cases reported in the English literature. Here, we present imaging findings of a case of primary diffuse large B-cell lymphoma of the seminal vesicle. On transrectal ultrasonography, the mass presented as a 3.0-cm-sized heterogeneous, hypoechoic lesion in the right seminal vesicle. Computed tomography (CT) revealed a mass with rim-like enhancement in the right seminal vesicle. On magnetic resonance imaging (MRI), the tumor showed iso-signal intensity on T1-weighted images and heterogeneously intermediate-high signal intensity on T2-weighted images. The tumor showed rim-like and progressive enhancement with non-enhancing portion on dynamic scanning. Diffusion restriction was observed in the mass. On fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET/CT) imaging, a high standardized uptake value (maxSUV, 23.5) by the tumor was noted exclusively in the right seminal vesicle.