• Title/Summary/Keyword: Dynamic gesture recognition

Search Result 58, Processing Time 0.042 seconds

Dynamic Bayesian Network based Two-Hand Gesture Recognition (동적 베이스망 기반의 양손 제스처 인식)

  • Suk, Heung-Il;Sin, Bong-Kee
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.4
    • /
    • pp.265-279
    • /
    • 2008
  • The idea of using hand gestures for human-computer interaction is not new and has been studied intensively during the last dorado with a significant amount of qualitative progress that, however, has been short of our expectations. This paper describes a dynamic Bayesian network or DBN based approach to both two-hand gestures and one-hand gestures. Unlike wired glove-based approaches, the success of camera-based methods depends greatly on the image processing and feature extraction results. So the proposed method of DBN-based inference is preceded by fail-safe steps of skin extraction and modeling, and motion tracking. Then a new gesture recognition model for a set of both one-hand and two-hand gestures is proposed based on the dynamic Bayesian network framework which makes it easy to represent the relationship among features and incorporate new information to a model. In an experiment with ten isolated gestures, we obtained the recognition rate upwards of 99.59% with cross validation. The proposed model and the related approach are believed to have a strong potential for successful applications to other related problems such as sign languages.

A Hand Gesture Recognition Scheme using WebCAM (웹캠을 이용한 손동작 인식 방법)

  • Kim, Kun-Woo;Lee, Won-Joo;Jeon, Chang-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.619-620
    • /
    • 2008
  • In this paper, we propose a new hand gesture recognition scheme using hand poses captured from a web camera. The key idea of this scheme is to extract skin color from the background-subtracted image. To extract skin color, in the first phase, we subtract background by repeatedly comparing the stored initial frame with next frames. And then we eliminate noise using dynamic table. In the second phase, we exactly recognize hand gesture by extracting skin color from ${YC_b}{C_r}$ color region.

  • PDF

On-line dyamic hand gesture recognition system for virtual reality using elementary component classifiers (기본 요소분류기를 이용한 가상현실용 실시간 동적 손 제스처 인식 시스템의 구현에 관한 연구)

  • 김종성;이찬수
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.9
    • /
    • pp.68-76
    • /
    • 1997
  • This paper presents a system which recognizes dynamic hand gestures for virtual reality(VR). A dynamic hand gesture is a method of communication for a computer and human who uses gestures, especially both hands and fingers. Since the human hands and fingers are not the same in physical dimension, the same form of a gestrue produced by two persons with their hands may not have the same numerical values which are obtained through electronic sensors. In this paper, we apply a fuzzy min-max neural network and feature analysis method using fuzzy logic for on-line pattern recognition.

  • PDF

On-line Motion Control of Avatar Using Hand Gesture Recognition (손 제스터 인식을 이용한 실시간 아바타 자세 제어)

  • Kim, Jong-Sung;Kim, Jung-Bae;Song, Kyung-Joon;Min, Byung-Eui;Bien, Zeung-Nam
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.6
    • /
    • pp.52-62
    • /
    • 1999
  • This paper presents a system which recognizes dynamic hand gestures on-line for controlling motion of numan avatar in virtual environment(VF). A dynamic hand gesture is a method of communication between a computer and a human being who uses gestures, especially both hands and fingers. A human avatar consists of 32 degree of freedom(DOF) for natural motion in VE and navigates by 8 pre-defined dynamic hand gestures. Inverse kinematics and dynamic kinematics are applied for real-time motion control of human avatar. In this paper, we apply a fuzzy min-max neural network and feature analysis method using fuzzy logic for on-line dynamic hand gesture recognition.

  • PDF

On-line Korean Sing Language(KSL) Recognition using Fuzzy Min-Max Neural Network and feature Analysis

  • zeungnam Bien;Kim, Jong-Sung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.85-91
    • /
    • 1995
  • This paper presents a system which recognizes the Korean Sign Language(KSL) and translates into normal Korean speech. A sign language is a method of communication for the deaf-mute who uses gestures, especially both hands and fingers. Since the human hands and fingers are not the same in physical dimension, the same form of a gesture produced by two signers with their hands may not produce the same numerical values when obtained through electronic sensors. In this paper, we propose a dynamic gesture recognition method based on feature analysis for efficient classification of hand motions, and on a fuzzy min-max neural network for on-line pattern recognition.

  • PDF

Hand Gesture Sequence Recognition using Morphological Chain Code Edge Vector (형태론적 체인코드 에지벡터를 이용한 핸드 제스처 시퀀스 인식)

  • Lee Kang-Ho;Choi Jong-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.9 no.4 s.32
    • /
    • pp.85-91
    • /
    • 2004
  • The use of gestures provides an attractive alternate to cumbersome interface devices for human-computer interaction. This has motivated a very active research area concerned with computer vision-based analysis and interpretation of hand gestures The most important issues in gesture recognition are the simplification of algorithm and the reduction of processing time. The mathematical morphology based on geometrical set theory is best used to perform the processing. The key idea of proposed algorithm is to track a trajectory of center points in primitive elements extracted by morphological shape decomposition. The trajectory of morphological center points includes the information on shape orientation. Based on this characteristic we proposed the morphological gesture sequence recognition algorithm using feature vectors calculated to the trajectory of morphological center points. Through the experiment, we demonstrated the efficiency of proposed algorithm.

  • PDF

Design of an Arm Gesture Recognition System Using Feature Transformation and Hidden Markov Models (특징 변환과 은닉 마코프 모델을 이용한 팔 제스처 인식 시스템의 설계)

  • Heo, Se-Kyeong;Shin, Ye-Seul;Kim, Hye-Suk;Kim, In-Cheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.10
    • /
    • pp.723-730
    • /
    • 2013
  • This paper presents the design of an arm gesture recognition system using Kinect sensor. A variety of methods have been proposed for gesture recognition, ranging from the use of Dynamic Time Warping(DTW) to Hidden Markov Models(HMM). Our system learns a unique HMM corresponding to each arm gesture from a set of sequential skeleton data. Whenever the same gesture is performed, the trajectory of each joint captured by Kinect sensor may much differ from the previous, depending on the length and/or the orientation of the subject's arm. In order to obtain the robust performance independent of these conditions, the proposed system executes the feature transformation, in which the feature vectors of joint positions are transformed into those of angles between joints. To improve the computational efficiency for learning and using HMMs, our system also performs the k-means clustering to get one-dimensional integer sequences as inputs for discrete HMMs from high-dimensional real-number observation vectors. The dimension reduction and discretization can help our system use HMMs efficiently to recognize gestures in real-time environments. Finally, we demonstrate the recognition performance of our system through some experiments using two different datasets.

A Design and Implementation of Gesture Recognition System (제스쳐 인식 시스템 설계 및 구현)

  • Kim, Kun-Woo;Kim, Chang-Hyun;Jeon, Chang-Ho;Lee, Won-Joo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2008.06a
    • /
    • pp.231-235
    • /
    • 2008
  • 컴퓨터 및 주변기기의 성능이 발전함에 따라 영상처리에 대한 관심이 높아지고, 영상으로부터 원하는 정보를 얻기 위한 연구가 활발히 진행되고 있다. 이러한 연구에서 움직임 추적, 특정 사물 추출, 동영상 검색 등으로 정보를 추출하는 과정은 높은 시스템 자원을 요구하기 때문에 멀티태스킹이 어렵다. 따라서 본 논문에서는 시스템 자원의 사용을 최소화하는 제스쳐 인식시스템을 설계하고 구현한다. 이 시스템은 동적테이블 마스킹을 이용하여 노이즈를 제거하고, 가이드라인 인식 방법을 적용하여 손동작 제스쳐를 인식한다, 또한 안면 비율 분할 방법과 음영 측정 방법을 이용하여 눈과 입술의 제스쳐를 인식한다.

  • PDF

Design and Performance Analysis of ML Techniques for Finger Motion Recognition (손가락 움직임 인식을 위한 웨어러블 디바이스 설계 및 ML 기법별 성능 분석)

  • Jung, Woosoon;Lee, Hyung Gyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.2
    • /
    • pp.129-136
    • /
    • 2020
  • Recognizing finger movements have been used as a intuitive way of human-computer interaction. In this study, we implement an wearable device for finger motion recognition and evaluate the accuracy of several ML (Machine learning) techniques. Not only HMM (Hidden markov model) and DTW (Dynamic time warping) techniques that have been traditionally used as time series data analysis, but also NN (Neural network) technique are applied to compare and analyze the accuracy of each technique. In order to minimize the computational requirement, we also apply the pre-processing to each ML techniques. Our extensive evaluations demonstrate that the NN-based gesture recognition system achieves 99.1% recognition accuracy while the HMM and DTW achieve 96.6% and 95.9% recognition accuracy, respectively.