• 제목/요약/키워드: Dynamic gesture recognition

검색결과 58건 처리시간 0.023초

신경회로망을 이용한 동적 손 제스처 인식에 관한 연구 (A Study on Dynamic Hand Gesture Recognition Using Neural Networks)

  • 조인석;박진현;최영규
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권1호
    • /
    • pp.22-31
    • /
    • 2004
  • This paper deals with the dynamic hand gesture recognition based on computer vision using neural networks. This paper proposes a global search method and a local search method to recognize the hand gesture. The global search recognizes a hand among the hand candidates through the entire image search, and the local search recognizes and tracks only the hand through the block search. Dynamic hand gesture recognition method is based on the skin-color and shape analysis with the invariant moment and direction information. Starting point and ending point of the dynamic hand gesture are obtained from hand shape. Experiments have been conducted for hand extraction, hand recognition and dynamic hand gesture recognition. Experimental results show the validity of the proposed method.

Dynamic gesture recognition using a model-based temporal self-similarity and its application to taebo gesture recognition

  • Lee, Kyoung-Mi;Won, Hey-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권11호
    • /
    • pp.2824-2838
    • /
    • 2013
  • There has been a lot of attention paid recently to analyze dynamic human gestures that vary over time. Most attention to dynamic gestures concerns with spatio-temporal features, as compared to analyzing each frame of gestures separately. For accurate dynamic gesture recognition, motion feature extraction algorithms need to find representative features that uniquely identify time-varying gestures. This paper proposes a new feature-extraction algorithm using temporal self-similarity based on a hierarchical human model. Because a conventional temporal self-similarity method computes a whole movement among the continuous frames, the conventional temporal self-similarity method cannot recognize different gestures with the same amount of movement. The proposed model-based temporal self-similarity method groups body parts of a hierarchical model into several sets and calculates movements for each set. While recognition results can depend on how the sets are made, the best way to find optimal sets is to separate frequently used body parts from less-used body parts. Then, we apply a multiclass support vector machine whose optimization algorithm is based on structural support vector machines. In this paper, the effectiveness of the proposed feature extraction algorithm is demonstrated in an application for taebo gesture recognition. We show that the model-based temporal self-similarity method can overcome the shortcomings of the conventional temporal self-similarity method and the recognition results of the model-based method are superior to that of the conventional method.

SVM을 이용한 동적 동작인식: 체감형 동화에 적용 (Dynamic Gesture Recognition using SVM and its Application to an Interactive Storybook)

  • 이경미
    • 한국콘텐츠학회논문지
    • /
    • 제13권4호
    • /
    • pp.64-72
    • /
    • 2013
  • 본 연구에서는 다차원의 데이터 인식에 유리한 SVM을 이용한 동적 동작인식 알고리즘을 제안한다. 우선, Kinect 비디오 프레임에서 동작의 시작과 끝을 찾아 의미있는 동작 프레임을 분할하고, 프레임 수를 동일하게 정규화시킨다. 정규화된 프레임에서 인체 모델에 기반한 인체 부위의 위치와 부위 사이의 관계를 이용한 동작 특징을 추출하여 동작인식을 수행한다. 동작인식기인 C-SVM는 각 동작에 대해 positive 데이터와 negative 데이터로 구성된 학습 데이터로 학습된다. 최종 동작 선정은 각 C-SVM의 결과값 중 가장 큰 값을 갖는 동작으로 한다. 제안하는 동작인식 알고리즘은 플래시 구연동화에서 더 나아가 유아가 능동적으로 구연동화에 참여할 수 있도록 고안된 체감형 동화 콘텐츠에 동작 인터페이스로 적용되었다.

Study on gesture recognition based on IIDTW algorithm

  • Tian, Pei;Chen, Guozhen;Li, Nianfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권12호
    • /
    • pp.6063-6079
    • /
    • 2019
  • When the length of sampling data sequence is too large, the method of gesture recognition based on traditional Dynamic Time Warping (DTW) algorithm will lead to too long calculation time, and the accuracy of recognition result is not high.Support vector machine (SVM) has some shortcomings in precision, Edit Distance on Real Sequences(EDR) algorithm does not guarantee that noise suppression will not suppress effective data.A new method based on Improved Interpolation Dynamic Time Warping (IIDTW)algorithm is proposed to improve the efficiency of gesture recognition and the accuracy of gesture recognition. The results show that the computational efficiency of IIDTW algorithm is more than twice that of SVM-DTW algorithm, the error acceptance rate is FAR reduced by 0.01%, and the error rejection rate FRR is reduced by 0.5%.Gesture recognition based on IIDTW algorithm can achieve better recognition status. If it is applied to unlock mobile phone, it is expected to become a new generation of unlock mode.

Dynamic Human Activity Recognition Based on Improved FNN Model

  • Xu, Wenkai;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제15권4호
    • /
    • pp.417-424
    • /
    • 2012
  • In this paper, we propose an automatic system that recognizes dynamic human gestures activity, including Arabic numbers from 0 to 9. We assume the gesture trajectory is almost in a plane that called principal gesture plane, then the Least Squares Method is used to estimate the plane and project the 3-D trajectory model onto the principal. An improved FNN model combined with HMM is proposed for dynamic gesture recognition, which combines ability of HMM model for temporal data modeling with that of fuzzy neural network. The proposed algorithm shows that satisfactory performance and high recognition rate.

가이드라인을 이용한 동적 손동작 인식 (Dynamic Hand Gesture Recognition using Guide Lines)

  • 김건우;이원주;전창호
    • 전자공학회논문지CI
    • /
    • 제47권5호
    • /
    • pp.1-9
    • /
    • 2010
  • 일반적으로 동적 손동작 인식을 위해서는 전처리, 손 추적, 손 모양 검출의 단계가 필요하다. 본 논문에서는 전처리와 손 모양 검출 방법을 개선함으로써 성능을 향상시킨 동적 손동작 인식 방법을 제안한다. 전처리 단계에서는 동적테이블을 이용하여 노이즈제거 성능을 높이고, YCbCr 컬러공간을 이용한 기존의 피부색 검출 방식에서 피부색의 범위를 조절할 수 있도록 하여 피부색 검출 성능을 높인다. 특히 손 모양 검출 단계에서는 가이드라인을 이용하여 동적 손동작 인식의 요소인 시작이미지(Start Image)와 정지 이미지(Stop Image)를 검출하여 동적 손동작을 인식하기 때문에 학습예제를 사용한 손동작 인식 방법에 비해 인식 속도가 빠르다는 이점이 있다. 가이드라인이란 웹캠을 통해 입력되는 손의 모양과 비교하여 검출하기 위해 화면에 출력하는 손 모양의 라인이다. 가이드라인을 이용한 동적 손동작 인식 방법의 성능을 평가하기 위해 웹캠을 사용하여 복잡한 배경과 단순한 배경으로 구분된 9가지 동영상을 대상으로 실험하였다. 그 결과 CPU 점유율이 낮고, 메모리 사용량도 적기 때문에 시스템 부하가 높은 환경에 효과적임을 알 수 있었다.

HSFE Network and Fusion Model based Dynamic Hand Gesture Recognition

  • Tai, Do Nhu;Na, In Seop;Kim, Soo Hyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권9호
    • /
    • pp.3924-3940
    • /
    • 2020
  • Dynamic hand gesture recognition(d-HGR) plays an important role in human-computer interaction(HCI) system. With the growth of hand-pose estimation as well as 3D depth sensors, depth, and the hand-skeleton dataset is proposed to bring much research in depth and 3D hand skeleton approaches. However, it is still a challenging problem due to the low resolution, higher complexity, and self-occlusion. In this paper, we propose a hand-shape feature extraction(HSFE) network to produce robust hand-shapes. We build a hand-shape model, and hand-skeleton based on LSTM to exploit the temporal information from hand-shape and motion changes. Fusion between two models brings the best accuracy in dynamic hand gesture (DHG) dataset.

Dynamic Time Warping 기반의 특징 강조형 제스처 인식 모델 (Feature-Strengthened Gesture Recognition Model based on Dynamic Time Warping)

  • 권혁태;이석균
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제4권3호
    • /
    • pp.143-150
    • /
    • 2015
  • 스마트 디바이스가 보편화되면서 이에 내장된 가속도 센서를 사용한 제스처의 인식에 관한 연구가 주목받고 있다. 최근 가속도 센서 데이터 시컨스를 통한 제스처 인식에 Dynamic Time Warping(DTW) 기법이 사용되는데, 본 논문에서는 DTW 사용 시 제스처의 인식률을 높이기 위한 특징 강조형 제스처 인식(FsGr) 모델을 제안한다. FsGr 모델은 잘못 인식될 가능성이 높은 유사 제스처들의 집합에 대해 특징이 강조되는 데이터 시컨스의 부분들을 정의하고 이들에 대해 추가적인 DTW를 실행하여 인식률을 높인다. FsGr 모델의 훈련 과정에서는 유사 제스처들의 집합들을 정의하고 유사 제스처들의 특징들을 분석한다. 인식 과정에서는 DTW를 사용한 1차 인식 시도의 결과 제스처가 유사 제스처 집합에 속한 경우, 특징 분석 결과를 기반으로 한 추가적인 인식을 시도하여 인식률을 높인다. 알파베트 소문자에 대한 인식 실험을 통해 FsGr 모델의 성능 평가 결과를 보인다.

A Dynamic Hand Gesture Recognition System Incorporating Orientation-based Linear Extrapolation Predictor and Velocity-assisted Longest Common Subsequence Algorithm

  • Yuan, Min;Yao, Heng;Qin, Chuan;Tian, Ying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권9호
    • /
    • pp.4491-4509
    • /
    • 2017
  • The present paper proposes a novel dynamic system for hand gesture recognition. The approach involved is comprised of three main steps: detection, tracking and recognition. First, the gesture contour captured by a 2D-camera is detected by combining the three-frame difference method and skin-color elliptic boundary model. Then, the trajectory of the hand gesture is extracted via a gesture-tracking algorithm based on an occlusion-direction oriented linear extrapolation predictor, where the gesture coordinate in next frame is predicted by the judgment of current occlusion direction. Finally, to overcome the interference of insignificant trajectory segments, the longest common subsequence (LCS) is employed with the aid of velocity information. Besides, to tackle the subgesture problem, i.e., some gestures may also be a part of others, the most probable gesture category is identified through comparison of the relative LCS length of each gesture, i.e., the proportion between the LCS length and the total length of each template, rather than the length of LCS for each gesture. The gesture dataset for system performance test contains digits ranged from 0 to 9, and experimental results demonstrate the robustness and effectiveness of the proposed approach.

손동작 인식 시스템을 위한 동적 학습 알고리즘 (Dynamic Training Algorithm for Hand Gesture Recognition System)

  • 김문환;황선기;배철수
    • 한국정보전자통신기술학회논문지
    • /
    • 제2권2호
    • /
    • pp.51-56
    • /
    • 2009
  • 본 논문에서는 카메라-투영 시스템에서 비전에 기반을 둔 손동작 인식을 위한 새로운 알고리즘을 제안하고 있다. 제안된 인식방법은 정적인 손동작 분류를 위하여 푸리에 변환을 사용하였다. 손 분할은 개선된 배경 제거 방법을 사용하였다. 대부분의 인식방법들이 같은 피검자에 의해 학습과 실험이 이루어지고 상호작용에 이전에 학습단계가 필요하다. 그러나 학습되지 않은 다양한 상황에 대해서도 상호작용을 위해 동작 인식이 요구된다. 그러므로 본 논문에서는 인식 작업 중에 검출된 불완전한 동작들을 정정하여 적용하였다. 그 결과 사용자와 독립되게 동작을 인식함으로써 새로운 사용자에게 신속하게 온라인 적용이 가능하였다.

  • PDF