• Title/Summary/Keyword: Dynamic geometry

Search Result 516, Processing Time 0.033 seconds

선수선형(船首船型)의 파랑하중(波浪荷重) 특성(特性) (The Effect of Forebody Section Shape on Wave Loads)

  • 황종흘;이승준;유재문
    • 대한조선학회지
    • /
    • 제19권1호
    • /
    • pp.15-22
    • /
    • 1982
  • The effects of the forebody geometry of ships on the response function of wave loads are investigated by numerical calculations based on a strip method. For the vertical wave loads both shearing forces and bending moments, the V-shaped bow gives greater responses than the U-shaped one in regular oblique waves. These results have been clarified by the vector diagram of all static and dynamic components contributing to the resultant wave bending moment. In the present evaluation the phase relation among the components plays an important role. And the effect of the forebody geometry on lateral wave loads seems to be negligible from the result of the present investigation.

  • PDF

적외선 카메라를 이용한 용접비드를 제어하기 위한 알고리즘 개발 (Development of an algorithm for Controlling Welding Bead Using Infrared Thermography)

  • 김일수;박창언;손준식;박순영;정영재
    • Journal of Welding and Joining
    • /
    • 제18권6호
    • /
    • pp.55-61
    • /
    • 2000
  • Dynamic monitoring of weld pool formation and seam deviations using infrared vision is described in this paper. Isothermal contours representing heat dissipation characteristics during the process of arc welding were analysed and processed using imaging techniques. Maximum bead width and penetration were recorded and the geometric position in relation to the welding seam was measured at each sampling point. Deviations from the desired bead geometry and welding path were sensed and their thermographic representations were digitised and welding path were sensed and their thermographic representations were digitised and subsequently identified. Evidence suggested that infrared thermography can be utilized to compensate for inaccuracies encountered in real-time during robotic arc welding.

  • PDF

급곡선용 레일탄성체결장치를 사용한 생력화궤도 시공 사례 (Construction Case of Maintenance-free Track System in Application of Elastic Rail Fastening System for Sharp Curved Section)

  • 공선용;김상진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.382-388
    • /
    • 2005
  • SMSC(Seoul Metropolitan Subway Corporation) is substantially taking the core role of mass transit system in Seoul Metropolitan area. When it was built, the design had challenged to sharp curved tracks less than 250m radius considering the protection of buildings and cultural properties as well as the connection to ground roads. Such circumstances have required a certain extent of slack in track geometry and therefore led to the construction of ballasted track with wooden sleepers. However, the dynamic force from running on sharp curved track has caused the misalignment and abnormal failure of track geometry, and it has resulted in a frequent maintenance and repair works which require a lot of cost and manpower. In this paper, we present the construction case of maintenance-free track system by using of concrete sleeper and elastic rail fastening system to ensure the safety of both passengers and trains, and to contribute the effective maintenance for track facilities of SMSC.

  • PDF

탐구형 소프트웨어를 활용한 기하학습내용의 구성방안 탐색 (Construction of Geometric Learning Contents Using the Experimental Computer Software)

  • 류희찬;유공주;조민식
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제10권1호
    • /
    • pp.139-159
    • /
    • 2000
  • The experimental software such as Cabri II, The Geometer's Sketchpad, etc. provides dynamic environment which construct and explore geometric objects interactively and inductively. It has the effects on mathematics itself differently from other technologies that are used in instruction. What is its characteristics\ulcorner What are the educational implication of it for the learning of geometry\ulcorner How is mental reasoning of geometric problems changed by transformation of the means of representation and the environment to manipulate them\ulcorner In this study, we answer these questions through the review of the related literatures and the analysis of textbooks, teaching materials using it and curricular materials. Also, we identify implications about how the criteria for choosing geometic content and the ways of constructing context, for orchestrating the students' exploration with the secondary geometry curriculum, can be changed.

  • PDF

항공용 가스터빈 연소기에서의 혼합기 노즐 형상의 단순화가 음향장 해석 결과에 미치는 영향 (Effects of a Simplified Mixture Nozzle Geometry on the Acoustic Field in an Aero Gas Turbine Combustor)

  • 표영민;홍수민;김대식
    • 한국분무공학회지
    • /
    • 제24권2호
    • /
    • pp.58-65
    • /
    • 2019
  • A 3D FEM (Finite Element Method) based Helmholtz solver has been commonly used to characterize fundamental acoustic behavior and investigate dynamic instability features in many combustion systems. In this approach, a geometrical simplification of the target system has been generally made in order to reduce computational time and cost because a real combustor and fuel nozzle have a very complicated flow passage. The feasibility of these simplifications is quantitatively investigated in a small aero gas turbine nozzle in term of acoustic characteristics. It is found that the simplification in a nozzle geometry during the 3D FEM analysis process has no great influence on the acoustic modeling results, while the calculation complexity can be improved for a similar modeling accuracy.

한옥의 건축요소 솔리드 모델링을 통한 열환경 평가에 관한 연구 (A Study on the Thermal Environment Evaluation of 'Hanok' considering Solid Model of Building Elements)

  • 박동소;신동진
    • 한국산학기술학회논문지
    • /
    • 제14권2호
    • /
    • pp.955-961
    • /
    • 2013
  • 본 연구는 친환경 건축의 대안으로 부각되고 있는 한옥의 열환경 평가를 수행하기 위하여 한옥을 구성하고 있는 건축요소의 전열 메카니즘을 규명하기 한옥건축부재의 규격화와 모델링을 통하여 열환경을 평가하였다. 최근 친환경 건축, 생태건축의 모델로 일반의 한옥 선호도는 높아지고 있으나, 한옥의 우수성이 정성적으로만 평가되고 있다. 이에 한옥의 건축재료 및 형태와 같은 건축요소를 고려, 한옥 건축요소의 Geometry를 작성하여 솔리드 모델을 구축하고, 열환경 평가의 도구로써 CFD를 적용하여 한옥의 실내 열환경을 평가하고자 하였다. 본 연구에서는 복잡한 형태의 Geometry 작성이 가능한 CATIA와 환경 시물레이션 Code인 FLUENT 등의 상용 Code를 활용함으로써 연구의 신뢰성을 높이고자 하였다. 본 연구는 일차적으로 서울지방에 건축된 한옥의 기준모델을 설정하여 벽, 천정, 바닥, 창호 등 건축요소의 부위별 형태를 고찰하고, Geometry작성의 입력자료로 사용하기 위하여 각 부위별 치수체계를 구축하였다. 건축요소의 부위별 각각의 형태를 솔리드 모델로 구축하기 위하여 단계별로 벽, 천정, 바닥, 창호 등에 관한 건축요소의 Geometry를 모델링하여 CFD 입력자료로 활용하여 열환경 시물레이션을 수행하였다.

백드래프트의 중력흐름에 미치는 구획실 내부 초기조건 및 개구부 형상의 영향 (Effects of Initial Condition and Opening Geometry of a Compartment on the Gravity Current in the Backdraft)

  • 박지웅;오창보;한용식;도규형
    • 한국안전학회지
    • /
    • 제30권6호
    • /
    • pp.18-25
    • /
    • 2015
  • Computational study of a gravity current prior to the backdraft was conducted using fire dynamic simulator (FDS). Various initial conditions of mixture compositions and compartment temperature as well as four opening geometries (Horizontal, Door, Vertical, and Full opening) were considered to figure out their effects on the gravity current. The density difference ratio (${\beta}$) between inside and outside of compartment, the gravity current time ($t_{grav}$) and velocity ($v_{grav}$), and non-dimensional velocity ($v^*$) were introduced to quantify the flow characteristics of the gravity current. Overall fluid structure of the gravity current at the fixed opening geometry showed similar development process for different ${\beta}$ conditions. However, $t_{grav}$ for entering air to reach the opposed wall to the opening geometry increased with ${\beta}$. Door, Vertical, and Horizontal openings where openings are attached on the ground showed similar development process of the gravity current except for Horizontal opening, which located on the middle of the opening wall. The magnitude of $v_{grav}$ at fixed ${\beta}$ was, from largest to smallest, Full > Vertical > Door > Horizontal, but it depended on both the size and location of the opening. On the other hand, $v^*$ was found to be independent to ${\beta}$, and only depended on the geometry of the opening.

감쇠비를 고려한 가속도 신호의 프랙탈 해석 (Fractal analysis of acceleration signal considering damping)

  • 윤문철
    • 한국기계가공학회지
    • /
    • 제12권5호
    • /
    • pp.157-162
    • /
    • 2013
  • To analyze the dynamic acceleration characteristics, it is necessary to identify the acceleration model using some methods that can represent the dynamic properties well. In this sense, fractal methods were used for the verification of characteristics of an acceleration signal. To estimate and analyze the geometry of acceleration signal, a fractal interpolation and its analysis was introduced in this paper. The chaotic nature of acceleration signal was considered in fractal modeling. In this study the fractal signal modeling has brought a focus within the scope of the fractal interpolation and fractal dimension. And a new idea of fractal dimension has been introduced and discussed considering the damping ratio and amplitude for its dynamic properties of the signal. The fractal dimension of acceleration with respect to the scaling factor using fixed data points of 1000 points was calculated and discussed. The acceleration behaviors of this results show some different characteristics. And this fractal analysis can be applied to other signal analysis of several machining such as pendulum type grinding and milling which has many dynamic properties in the signal.

선삭가공에 있어서 절삭저항의 동적성분에 관한 연구 [I] -동적성분에 의한 Chip배출상태의 인식- (A Study on the Dynamic Component of Cutting Force in Turning[1] -Recognition of Chip Flow by the Dynamic Cutting Force Component-)

  • 정의식
    • 한국정밀공학회지
    • /
    • 제5권1호
    • /
    • pp.84-93
    • /
    • 1988
  • The on-line detection of the chip flow is one of the most important technologies in com- pletly automatic operation of machine tool, such as FMS and Unmanned Factories. This problem has been studied by many researchers, however, it is not solved as yet. For the recognition of chip flow in this study, the dynamic cutting force components due to the chip breaking were measured by dynamometer of piezo-electric type, and the frequency components of cutting force were also analyzed. From the measured results, the effect of cutting conditions and tool geometry on the dynamic cutting force component and chip formation were investigated in addition to the relationships between frequency of chip breaking (fB) and side serrated crack (fC) of chip. As a result, the following conclusions were obtaianed. 1) The chip formations have a large effect on the dynamic cutting force components. When chip breaking takes place, the dynamic cutting force component greatly increases, and the peridoic components appear, which correspond to maximum peak- frequency. 2) The crater wear of tool has a good effect on the chip control causing the chiup to be formed as upward-curl shape. In this case, the dymamic cutting force component greatly increases also 3) fB and fC of chip are closely corelated, and fC of chips has a large effect on the change of the situation of chip flow and dynamic cutting force component. 4) Under wide cutting conditions, the limit value (1.0 kgf) of dynamic cutting force component exists between the broken and continuous chips. Accordingly, this value is suitable for recognition of chip flow in on-line control of the cutting process.

  • PDF

Forced vibration analysis of cracked functionally graded microbeams

  • Akbas, Seref D.
    • Advances in nano research
    • /
    • 제6권1호
    • /
    • pp.39-55
    • /
    • 2018
  • Forced vibration analysis of a cracked functionally graded microbeam is investigated by using modified couple stress theory with damping effect. Mechanical properties of the functionally graded beam change vary along the thickness direction. The crack is modelled with a rotational spring. The Kelvin-Voigt model is considered in the damping effect. In solution of the dynamic problem, finite element method is used within Timoshenko beam theory in the time domain. Influences of the geometry and material parameters on forced vibration responses of cracked functionally graded microbeams are presented.