• 제목/요약/키워드: Dynamic error model

검색결과 634건 처리시간 0.027초

GPS Output Signal Processing considering both Correlated/White Measurement Noise for Optimal Navigation Filtering

  • Kim, Do-Myung;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권4호
    • /
    • pp.499-506
    • /
    • 2012
  • In this paper, a dynamic modeling for the velocity and position information of a single frequency stand-alone GPS(Global Positioning System) receiver is described. In static condition, the position error dynamic model is identified as a first/second order transfer function, and the velocity error model is identified as a band-limited Gaussian white noise via non-parametric method of a PSD(Power Spectrum Density) estimation in continuous time domain. A Kalman filter is proposed considering both correlated/white measurements noise based on identified GPS error model. The performance of the proposed Kalman filtering method is verified via numerical simulation.

퍼지논리제어기를 이용한 차량의 궤적제어 (Vehicle Trajectory Control using Fuzzy Logic Controller)

  • 이승종;조현욱
    • 한국정밀공학회지
    • /
    • 제20권11호
    • /
    • pp.91-99
    • /
    • 2003
  • When the driver suddenly depresses the brake pedal under critical conditions, the desired trajectory of the vehicle can be changed. In this study, the vehicle dynamics and fuzzy logic controller are used to control the vehicle trajectory. The dynamic vehicle model consists of the engine, the rotational wheel, chassis, tires and brakes. The engine model is derived from the engine experimental data. The engine torque makes the wheel rotate and generates the angular velocity and acceleration of the wheel. The dynamic equation of the vehicle model is derived from the top-view vehicle model using Newton's second law. The Pacejka tire model formulated from the experimental data is used. The fuzzy logic controller is developed to compensate for the trajectory error of the vehicle. This fuzzy logic controller individually acts on the front right, front left, rear right and rear left brakes and regulates each brake torque. The fuzzy logic controlling each brake works to compensate for the trajectory error on the split - $\mu$ road conditions follows the desired trajectory.

로못 머니퓰레이터를 위한 적응학습제어 알고리즘의 구현 (Implementation of an adaptive learning control algorithm for robot manipulators)

  • 이형기;최한호;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.632-637
    • /
    • 1992
  • Recently many dynamics control algorithms using robot dynamic equation have been proposed. One of them, Kawato's feedback error learning scheme requires neither an accurate model nor parameter estimation and makes the robot motion closer to the desired trajectory by repeating operation. In this paper, the feedback error learning algorithm is implemented to control a robot system, 5 DOF revolute type movemaster. For this purpose, an actuator dynamic model is constructed considering equivalent robot dynamics model with respect to actuator as well as friction model. The command input acquired from the actuator dynamic model is the sum of products of unknown parameters and known functions. To compute the control algorithm, a parallel processing computer, transputer, is used and real-time computing is achieved. The experiment is done for the three major link of movemaster and its result is presented.

  • PDF

파라미터 수정을 사용한 형상변화 및 측정오차가 있는 빔의 모델개선 (Model Updating of Beams with Shape Change and Measurement Error Using Parameter Modification)

  • 윤병옥;최유근;장인식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.335-340
    • /
    • 2001
  • It is important to model the mechanical structure precisely and reasonably in predicting the dynamic characteristics, controlling the vibration, and designing the structure dynamics. In the finite element modeling, the errors can be contained from the physical parameters, the approximation of the boundary conditions, and the element modeling. From the dynamic test, more precise dynamic characteristics can be obtained. Model updating using parameter modification is appropriate when the design parameter is used to analyze the input parameter like finite element method. Finite element analysis for cantilever and simply supported beams with uniform area and shape change are carried out as model updating examples. Mass and stiffness matrices are updated by comparing test and analytical modal frequencies. The result shows that the updated frequencies become closer to the test frequencies.

  • PDF

광디스크 드라이브의 진동특성에 대한 유한요소해석 (Finite Element Analysis on Vibration Characteristics of an Optical Disk Drive)

  • 박건순;임종락;한용희;손희기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.227-232
    • /
    • 1998
  • This work focuses on the analysis of dynamic characteristics of an optical disk drive, Dynamic performance of the drive plays an important role in the design of a mechanism where the quality of servo mainly affected by the quality of controlling focus error and tracking error, A finite element model of the optical disk drive is presented to demonstrate its dynamic behaviors. Experimental results for the drive are presented and compared to predictions from the finite element model for verification. Using the finite element model, dynamic responses are predicted under internal and external excitations. Some design parameters of the vibration isolators are presented, satisfying the requirements of DVD drive system.

  • PDF

저급 관성센서의 오차 분석 및 성능 향상에 관한 연구 (A Study on the Error Analysis and Performance Improvement of Low-Cost Inertial Sensors)

  • 박문수;원종훈;홍석교;이자성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.28-28
    • /
    • 2000
  • Low-cost solid-state inertial sensors of three rate Gyroscopes and a triaxial Accelerometer are evaluated in static and dynamic environments. As a interim result, error models of each inertial sensors are generated. Model parameters with respect to temperature are acquired in static environment. These error models are included in an Extended Kalman Filter(EKF) to compensate bias error due to temperature variation. Experimental results in dynamic environment are included to show the validity of the each error model and the performance improvement of a compensated low cost inertial sensors for a navigational application

  • PDF

역동력학을 이용한 DC 모터의 속도제어 (Speed Control of DC Motors Using Inverse Dynamics)

  • 김병만;손영득;하윤수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권5호
    • /
    • pp.97-102
    • /
    • 2000
  • In this paper, a methodology for designing a controller based on inverse dynamics for speed control of DC motors is presented. The proposed controller consists of a prefilter, the inverse dynamic model of a system and the PI controller. The prefilter prevents high frequency effects from the inverse dynamic model. The model of the system in characterized by a nonlinear equation with coulomb friction. The PI controller regulates the error between the set-point and the system output which may be caused by modeling error, variations of parameters and disturbances. The output which may be caused by modeling error, variations of parameters and disturbances. The parameters of the model and the PI controller are adjusted offlinely by a genetic algorithm. An experimental work on a DC motor system is carried out to illustrate the performance of the proposed controller.

  • PDF

Developing Job Flow Time Prediction Models in the Dynamic Unbalanced Job Shop

  • Kim, Shin-Kon
    • 한국경영과학회지
    • /
    • 제23권1호
    • /
    • pp.67-95
    • /
    • 1998
  • This research addresses flow time prediction in the dynamic unbalanced job shop scheduling environment. The specific purpose of the research is to develop the job flow time prediction model in the dynamic unbalance djob shop. Such factors as job characteristics, job shop status, characteristics of the shop workload, shop dispatching rules, shop structure, etc, are considered in the prediction model. The regression prediction approach is analyzed within a dynamic, make-to-order job shop simulation model. Mean Absolute Lateness (MAL) and Mean Relative Error (MRE) are used to compare and evaluate alternative regression models devloped in this research.

  • PDF

보간과 회귀를 위한 일반크리깅 모델 (Generalized Kriging Model for Interpolation and Regression)

  • 정재준;이태희
    • 대한기계학회논문집A
    • /
    • 제29권2호
    • /
    • pp.277-283
    • /
    • 2005
  • Kriging model is widely used as design analysis and computer experiment (DACE) model in the field of engineering design to accomplish computationally feasible design optimization. In general, kriging model has been applied to many engineering applications as an interpolation model because it is usually constructed from deterministic simulation responses. However, when the responses include not only global nonlinearity but also numerical error, it is not suitable to use Kriging model that can distort global behavior. In this research, generalized kriging model that can represent both interpolation and regression is proposed. The performances of generalized kriging model are compared with those of interpolating kriging model for numerical function with error of normal distribution type and trigonometric function type. As an application of the proposed approach, the response of a simple dynamic model with numerical integration error is predicted based on sampling data. It is verified that the generalized kriging model can predict a noisy response without distortion of its global behavior. In addition, the influences of maximum likelihood estimation to prediction performance are discussed for the dynamic model.

퍼지신경망과 강인한 마찰 상태 관측기를 이용한 비선형 마찰 서보시스템에 대한 강인 제어 (Robust Control for Nonlinear Friction Servo System Using Fuzzy Neural Network and Robust Friction State Observer)

  • 한성익
    • 한국정밀공학회지
    • /
    • 제25권12호
    • /
    • pp.89-99
    • /
    • 2008
  • In this paper, the position tracking control problem of the servo system with nonlinear dynamic friction is issued. The nonlinear dynamic friction contains a directly immeasurable friction state variable and the uncertainty caused by incomplete parameter modeling and its variations. In order to provide the efficient solution to these control problems, we propose the composite control scheme, which consists of the robust friction state observer, the FNN approximator and the approximation error estimator with sliding mode control. In first, the sliding mode controller and the robust friction state observer is designed to estimate the unknown internal state of the LuGre friction model. Next, the FNN estimator is adopted to approximate the unknown lumped friction uncertainty. Finally, the adaptive approximation error estimator is designed to compensate the approximation error of the FNN estimator. Some simulations and experiments on the servo system assembled with ball-screw and DC servo motor are presented. Results show the remarkable performance of the proposed control scheme. The robust friction state observer can successfully identify immeasurable friction state and the FNN estimator and adaptive approximation error estimator give the robustness to the proposed control scheme against the uncertainty of the friction parameters.