• Title/Summary/Keyword: Dynamic equations

Search Result 2,267, Processing Time 0.031 seconds

SIMULATION OF STARTING PROCESS OF DIESEL ENGINE UNDER COLD CONDITIONS

  • Park, J.K.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.289-298
    • /
    • 2007
  • A nonlinear dynamic simulation model from cranking to idle speed is developed to optimize the cold start process of a diesel engine. Physically-based first order nonlinear differential equations and some algebraic equations describing engine dynamics and starter motor dynamics are used to model the performance of cold starting process which is very complex and involves many components including the cold start aiding method. These equations are solved using numerical schemes to describe the starting process of a diesel engine and to study the effects of cold starting parameters. The validity of this model is examined by a cold start test at $-20^{\circ}C$. Using the developed model the effects of the important starting variables on the cold starting processes were investigated. This model can be served as a tool for designing computer aided control systems that improve cold start performance.

Nonlinear Response Phenomena of a Randomly Excited Vibration Absorber System (불규칙적으로 가진되는 동흡진기계의 비선형응답현상)

  • Cho, Duk-Sang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.2
    • /
    • pp.141-147
    • /
    • 2000
  • The nonlinear response statistics of an autoparameteric system under broad-band random excitation is investigated. The specific system examined is a vibration absorber system with internal resonance, which is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. The Fokker-Planck equations is used to generate a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian closure method the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. The jump phenomenon was found by Gaussian closure method under random excitation.

  • PDF

An Optimal Design of a two stage relief valve by Genetic Algorithm

  • Kim, seungwoo;doowan Im;Kyungkwan Ahn;Soonyong Yang;Lee, Byungryong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.66.2-66
    • /
    • 2002
  • In this study, a novel systematic design procedure by Genetic Algorithm of a two stage relief valve is proposed. First of all, a mathematical model describing the dynamics of a balanced piston type relief valve has been derived. Governing equations such as dynamic equations for the main spool and the pilot spool and flow equations for each orifice are established. The mathematical model is verified by comparing the results of simulation with that of experiments. Furthermore, influences of the parameters on the dynamic characteristics of a relief valve have been investigated by simulation of the proposed model. Major design parameters on the valve response are determin...

  • PDF

Analysis on random vibration of a non-linear system in flying vehicle due to stochastic disturbances (불규칙 교란을 받는 비행체에 장착된 비선형 시스템의 난진동 해석)

  • 구제선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1426-1435
    • /
    • 1990
  • Dynamic behaviour of point tracking system mounted on flying vehicle shaking in a random manner is investigated and the system dynamic is represented by nonlinear stochastic equations. 2-D.O.F. nonlinear stochastic equations are successfully transformed to linear stochastic equations via equivalent linearization procedure in stochastic sense. Newly developed hybrid technique is used to obtain response statistics of the system under non-white random excitation, which is proved to be remarkably accurate one by performing stochastic simulation.

Comparison Between Two Analytical Solutions for Random Vibration Responses of a Spring-Pendulum System with Internal Resonance (내부공진을 가진 탄성진자계의 불규칙 진동응답을 위한 두 해석해의 비교)

  • 조덕상;이원경
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.715-722
    • /
    • 1998
  • An investigation into the stochastic bifurcation and response statistics of an autoparameteric system under broad-band random excitation is made. The specific system examined is a spring-pendulum system with internal resonance, which is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. The Fokker-Planck equations is used to genrage a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian and non-Gaussian closure methods the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinanary differential equations. In view of equilibrium solutions of this system and their stability we examine the stochastic bifurcation and response statistics. The analytical results are compared with results obtained by Monte Carlo simulation.

  • PDF

Modeling and Simulation of Aircraft Motion on the Ground: Part I. Derivation of Equations of Motion

  • Ro, Kapseong;Lee, Haechang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.28-43
    • /
    • 2001
  • Developed in these two series of paper is a complex dynamic model representing the motion of aircraft on the ground and a computer program for numerical simulation. The first part of paper presents the theoretical derivation of equations of motion of the landing gear system based on the physical principle. Developed model is 'structured' in the sense that the undercarriage system is regarded as an assembly of strut, tire, and wheel, where each component is modeled by a separate module. These modules are linked with two external modules-the aircraft and the runway characteristics-to carry out dynamic analysis and numerical simulation of the aircraft motion on the ground. Three sets of coordinate system associated with strut, wheel/tire and runway are defined, and external loads to each component and response characteristics are examined. Lagrangian formulation is used to derive the undercarriage equations of motion relative to the moving aircraft, and the resultant forces and moments from the undercarriage are transformed to aircraft body axes.

  • PDF

Dynamic analysis of guideway structures by considering ultra high-speed Maglev train-guideway interaction

  • Song, Myung-Kwan;Fujino, Yozo
    • Structural Engineering and Mechanics
    • /
    • v.29 no.4
    • /
    • pp.355-380
    • /
    • 2008
  • In this study, the new three-dimensional finite element analysis model of guideway structures considering ultra high-speed magnetic levitation train-bridge interaction, in which the various improved finite elements are used to model structural members, is proposed. The box-type bridge deck of guideway structures is modeled by Nonconforming Flat Shell finite elements with six DOF (degrees of freedom). The sidewalls on a bridge deck are idealized by using beam finite elements and spring connecting elements. The vehicle model devised for an ultra high-speed Maglev train is employed, which is composed of rigid bodies with concentrated mass. The characteristics of levitation and guidance force, which exist between the super-conducting magnet and guideway, are modeled with the equivalent spring model. By Lagrange's equations of motion, the equations of motion of Maglev train are formulated. Finally, by deriving the equations of the force acting on the guideway considering Maglev train-bridge interaction, the complete system matrices of Maglev train-guideway structure system are composed.

Dynamic Analysis of Harmonically Excited Non-Linear Structure System Using Harmonic Balance Method

  • Mun, Byeong-Yeong;Gang, Beom-Su;Kim, Byeong-Su
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1507-1516
    • /
    • 2001
  • An analytical method is presented for evaluation of the steady state periodic behavior of nonlinear structural systems. This method is based on the substructure synthesis formulation and a harmonic balance procedure, which is applied to the analysis of nonlinear responses. A complex nonlinear system is divided into substructures, of which equations are approximately transformed to modal coordinates including nonlinear term under the reasonable procedure. Then, the equations are synthesized into the overall system and the nonlinear solution for the system is obtained. Based on the harmonic balance method, the proposed procedure reduces the size of large degrees-of-freedom problem in the solving nonlinear equations. Feasibility and advantages of the proposed method are illustrated using the study of the nonlinear rotating machine system as a large mechanical structure system. Results obtained are reported to be an efficient approach with respect to nonlinear response prediction when compared with other conventional methods.

  • PDF

Optimal Design of Vehicle Suspenion Systems Using Sensitivity Analysis (민감도 해석을 이용한 현가장치의 동역학적 최적설계)

  • 탁태오
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.50-61
    • /
    • 1994
  • A method for performing dynamic design sensitivity analysis of vehicle suspension systems which have three dimensional closed-loop kinematic structure is presented. A recursive form of equations of motion for a MacPherson suspension system is derived as basis for sensitivity analysis. By directly differentiating the equations of motion with respect to design variables, sensitivity equations are obtained. The direct generalize for the application of multibody dynamic sensitivity analysis. Based on the proposed sensitivity analysis, optimal design of a MacPherson suspension system is carried out taking unsprung mass, spring and damping coefficients as design variables.

  • PDF

Vibration Analysis of a Beam Translating over Supports in Vertical Motion (수직운동하는 지지대 상에서 직진운동하는 보의 진동해석)

  • 정찬교;김창부
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.189-196
    • /
    • 1996
  • Vibration of a beam translating over supports in vertical motion is investigated in this paper. Equations of motion are formulated using the virtual work principle by regarding the supports as kinematical constraints imposed on an unrestrained beam and by discretizing the beam via the assumed mode method. Differential-algebraic equations of motion are derived and reduced to differential equations in independent generalized coordinates by the generalized coordinate partitioning method. Geometric stiffness of the beam due to translating motion is considered and how the geometric stiffness of beam affects dynamic stability is also investigated. Instability of the beam. in various conditions is also investigated using Floquet theory and then the results are verified through the dynamic response analysis. Results of numerical simulation are presented for various prescribed motions of the beam.

  • PDF