• Title/Summary/Keyword: Dynamic efficiency

Search Result 2,280, Processing Time 0.028 seconds

A topological optimization method for flexible multi-body dynamic system using epsilon algorithm

  • Yang, Zhi-Jun;Chen, Xin;Kelly, Robert
    • Structural Engineering and Mechanics
    • /
    • v.37 no.5
    • /
    • pp.475-487
    • /
    • 2011
  • In a flexible multi-body dynamic system the typical topological optimization method for structures cannot be directly applied, as the stiffness varies with position. In this paper, the topological optimization of the flexible multi-body dynamic system is converted into structural optimization using the equivalent static load method. First, the actual boundary conditions of the control system and the approximate stiffness curve of the mechanism are obtained from a flexible multi-body dynamical simulation. Second, the finite element models are built using the absolute nodal coordination for different positions according to the stiffness curve. For efficiency, the static reanalysis method is utilized to solve these finite element equilibrium equations. Specifically, the finite element equilibrium equations of key points in the stiffness curve are fully solved as the initial solution, and the following equilibrium equations are solved using a reanalysis method with an error controlled epsilon algorithm. In order to identify the efficiency of the elements, a non-dimensional measurement is introduced. Finally, an improved evolutional structural optimization (ESO) method is used to solve the optimization problem. The presented method is applied to the optimal design of a die bonder. The numerical results show that the presented method is practical and efficient when optimizing the design of the mechanism.

Dynamic Available-Resource Reallocation based Job Scheduling Model in Grid Computing (그리드 컴퓨팅에서 유효자원 동적 재배치 기반 작업 스케줄링 모델)

  • Kim, Jae-Kwon;Lee, Jong-Sik
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.2
    • /
    • pp.59-67
    • /
    • 2012
  • A grid computing consists of the physical resources for processing one of the large-scale jobs. However, due to the recent trends of rapid growing data, the grid computing needs a parallel processing method to process the job. In general, each physical resource divides a requested large-scale task. And a processing time of the task varies with an efficiency and a distance of each resource. Even if some resource completes a job, the resource is standing by until every divided job is finished. When every resource finishes a processing, each resource starts a next job. Therefore, this paper proposes a dynamic resource reallocation scheduling model (DDRSM). DDRSM finds a waiting resource and reallocates an unfinished job with an efficiency and a distance of the resource. DDRSM is an efficient method for processing multiple large-scale jobs.

Adaptive Detection of a Moving Target Undergoing Illumination Changes against a Dynamic Background

  • Lu, Mu;Gao, Yang;Zhu, Ming
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.745-751
    • /
    • 2016
  • A detection algorithm, based on the combined local-global (CLG) optical-flow model and Gaussian pyramid for a moving target appearing against a dynamic background, can compensate for the inadaptability of the classic Horn-Schunck algorithm to illumination changes and reduce the number of needed calculations. Incorporating the hypothesis of gradient conservation into the traditional CLG optical-flow model and combining structure and texture decomposition enable this algorithm to minimize the impact of illumination changes on optical-flow estimates. Further, calculating optical-flow with the Gaussian pyramid by layers and computing optical-flow at other points using an optical-flow iterative with higher gray-level points together reduce the number of calculations required to improve detection efficiency. Finally, this proposed method achieves the detection of a moving target against a dynamic background, according to the background motion vector determined by the displacement and magnitude of the optical-flow. Simulation results indicate that this algorithm, in comparison to the traditional Horn-Schunck optical-flow algorithm, accurately detects a moving target undergoing illumination changes against a dynamic background and simultaneously demonstrates a significant reduction in the number of computations needed to improve detection efficiency.

Dynamic analysis of deployable structures using independent displacement modes based on Moore-Penrose generalized inverse matrix

  • Xiang, Ping;Wu, Minger;Zhou, Rui Q.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1153-1174
    • /
    • 2015
  • Deployable structures have gained more and more applications in space and civil structures, while it takes a large amount of computational resources to analyze this kind of multibody systems using common analysis methods. This paper presents a new approach for dynamic analysis of multibody systems consisting of both rigid bars and arbitrarily shaped rigid bodies. The bars and rigid bodies are connected through their nodes by ideal pin joints, which are usually fundamental components of deployable structures. Utilizing the Moore-Penrose generalized inverse matrix, equations of motion and constraint equations of the bars and rigid bodies are formulated with nodal Cartesian coordinates as unknowns. Based on the constraint equations, the nodal displacements are expressed as linear combination of the independent modes of the rigid body displacements, i.e., the null space orthogonal basis of the constraint matrix. The proposed method has less unknowns and a simple formulation compared with common multibody dynamic methods. An analysis program for the proposed method is developed, and its validity and efficiency are investigated by analyses of several representative numerical examples, where good accuracy and efficiency are demonstrated through comparison with commercial software package ADAMS.

Switching Picture Added Scalable Video Coding and its Application for Video Streaming Adaptive to Dynamic Network Bandwidth

  • Jia, Jie;Choi, Hae-Chul;Kim, Hae-Kwang
    • Journal of Broadcast Engineering
    • /
    • v.13 no.1
    • /
    • pp.119-127
    • /
    • 2008
  • Transmission of video over Internet or wireless network requires coded stream capable of adapting to dynamic network conditions instantly. To meet this requirement, various scalable video coding schemes have been developed, among which the Scalable Video Coding (SVC) extension of the H.264/AVC is the most recent one. In comparison with the scalable profiles of previous video coding standards, the SVC achieves significant improvement on coding efficiency performance. For adapting to dynamic network bandwidth, the SVC employs inter-layer switching between different temporal, spatial or/and fidelity layers, which is currently supported with instantaneous decoding refresh (IDR) access unit. However, for real-time adaptability, the SVC has to frequently employ the IDR picture, which dramatically decreases the coding efficiency. Therefore, an extension of SP picture from the AVC to the SVC for an efficient inter-layer switching is investigated and presented in this paper. Simulations regarding the adaptability to dynamic network bandwidth are implemented. Results of experiment show that the SP picture added SVC provides an average 1.2 dB PSNR enhancement over the current SVC while providing similar adaptive functionality.

CRASHWORTHINESS ASSESSMENT OF SIDE IMPACT OF AN AUTO-BODY WITH 60TRIP STEEL FOR SIDE MEMBERS

  • Huh, H.;Lim, J.H.;Song, J.H.;Lee, K.S.;Lee, Y.W.;Han, S.S.
    • International Journal of Automotive Technology
    • /
    • v.4 no.3
    • /
    • pp.149-156
    • /
    • 2003
  • This paper is concerned with the energy absorption efficiency of auto-body side structures for the conventional steel and 60TRIP high strength steel. In order to evaluate the energy absorption efficiency, the dynamic crash analysis is carried out with the regulation of US-SINCAP. The analysis adopts the Johnson-Cook model for the dynamic material properties, which have been obtained from dynamic material tests. For the sake of the dynamic material properties, the analysis has been accurately peformed for the crashworthiness assesment. The analysis result provides deformed shapes, amounts of penetration and accelerations at several important points during crash. The result confirms that 60TRIP greatly improves the crashworthiness of the side members without sacrificing the weight and thus can be used for the light-weight design of an auto-body.

Distribution of supply chain capabilities and firm's sustainable development

  • TO, Tha Hien;THAN, Thuy Trong;NGUYEN, Duyen Thi Kim;NGUYEN, Dat Ngoc
    • Journal of Distribution Science
    • /
    • v.19 no.5
    • /
    • pp.5-12
    • /
    • 2021
  • Purpose: Research on supply chain sustainability is important for exporters When the factor of sustainable development is considered by the businesses as well as governments of all countries. Research on supply chain sustainability is important for exporters. Sustainable supply chain management and supply chain dynamics will help enterprises adapt to changes in the business environment. This study analyzes the impact of sustainable supply chain management, and supply chain dynamic capabilities on the sustainable development of exporting enterprises in Vietnam. Research design, data, and methodology: The research model and survey are designed based on previous studies after surveying export enterprises. With 185 samples collected from export enterprises. The Structural Equation Modeling (SEM) analysis technique is used. Data analysis is performed on SPSS and AMOS software (Reliability test, Confirmatory Factor Analysis, SEM). Results: Sustainable supply chain management and supply chain dynamic capabilities all have positive effects on the sustainable development of businesses (sustainable development is measured by distribution: measuring economic efficiency, social efficiency, and environmental performance). Conclusions: From the results of this study, the authors also made several recommendations to help export enterprises develop sustainability based on sustainable supply chain management and supply chain dynamic capabilities.

A stochastic finite element method for dynamic analysis of bridge structures under moving loads

  • Liu, Xiang;Jiang, Lizhong;Xiang, Ping;Lai, Zhipeng;Zhang, Yuntai;Liu, Lili
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.31-40
    • /
    • 2022
  • In structural engineering, the material properties of the structures such as elastic modulus, shear modulus, density, and size may not be deterministic and may vary at different locations. The dynamic response analysis of such structures may need to consider these properties as stochastic. This paper introduces a stochastic finite element method (SFEM) approach to analyze moving loads problems. Firstly, Karhunen-Loéve expansion (KLE) is applied for expressing the stochastic field of material properties. Then the mathematical expression of the random field is substituted into the finite element model to formulate the corresponding random matrix. Finally, the statistical moment of the dynamic response is calculated by the point estimation method (PEM). The accuracy and efficiency of the dynamic response obtained from the KLE-PEM are demonstrated by the example of a moving load passing through a simply supported Euler-Bernoulli beam, in which the material properties (including elastic modulus and density) are considered as random fields. The results from the KLE-PEM are compared with those from the Monte Carlo simulation. The results demonstrate that the proposed method of KLE-PEM has high accuracy and efficiency. By using the proposed SFEM, the random vertical deflection of a high-speed railway (HSR) bridge is analyzed by considering the random fields of material properties under the moving load of a train.

Optimal Control of Large-Scale Dynamic Systems using Parallel Processing (병렬처리를 이용한 대규모 동적 시스템의 최적제어)

  • Park, Ki-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.403-410
    • /
    • 1999
  • In this study, a parallel algorithm has been developed that can quickly solve the optiaml control problem of large-scale dynamic systems. The algorithm adopts the sequential quadratic programming methods and achieves domain decomposition-type parallelism in computing sensitivities for search direction computation. A silicon wafer thermal process problem has been solved using the algorithm, and a parallel efficiency of 45% has been achieved with 16 processors. Practical methods have also been investigated in this study as a way to further speed up the computation time.

  • PDF

A Dynamic Graphical Method for Transformations and Curvature Specifications in Regression

  • Seo, Han-Son;Yoon, Min
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.1
    • /
    • pp.189-195
    • /
    • 2009
  • A dynamic graphical procedure is suggested to estimate optimal response transformation parameter and a curvature function of covariates in the regression model. Augmented partial residual plot is chosen for specifying a curvature. The proposed method is compared with a different approach (Soo, 2007) and is investigated efficiency by applying it to the real and the artificial data. The method is also extended to the 3D graphical situations.