• Title/Summary/Keyword: Dynamic displacement

Search Result 1,911, Processing Time 0.024 seconds

A Short-term Dynamic Displacement Estimation Method for Civil Infrastructures (사회기반 건설구조물의 단기 동적변위 산정기법)

  • Choi, Jaemook;Chung, Junyeon;Koo, Gunhee;Kim, Kiyoung;Sohn, Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.249-254
    • /
    • 2017
  • The paper presents a new short-term dynamic displacement estimation method based on an acceleration and a geophone sensor. The proposed method combines acceleration and velocity measurements through a real time data fusion algorithm based on Kalman filter. The proposed method can estimate the displacement of a structure without displacement sensors, which is typically difficult to be applied to earthquake or fire sites due to their requirement of a fixed rigid support. The proposed method double-integrates the acceleration measurement recursively, and corrects an accumulated integration error based on the velocity measurement, The performance of the proposed method was verified by a lab-scale test, in which displacement estimated by the proposed method are compared to a reference displacement measured by laser doppler vibrometer (LDV).

Displacement and Earth Pressure Distribution of the Reinforced Soil Segmental Retaining Walls under the Simulated Cyclic Train Loading (모사열차 반복하중 재하에 따른 블록식 보강토 옹벽의 변위 및 토압 분포)

  • 이진욱;고태훈;이성혁;심재훈
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.620-625
    • /
    • 2002
  • In this study, the simulated cyclic train loading test was carried out in order to investigate the dynamic behavior in/at the block type reinforced earth retaining wall. The results in this test were compared with unreinforced and reinforced case, respectively. It was shown that we confirmed the correlation between earth pressure and displacement, the confining effect of wall displacement by the effect of geogrid.

  • PDF

$\pi$-A properties of phospholipid monolayers by Maxwell-displacement-current-measuring technique (변위전류법에 의한 지질 단분자막의 $\pi$-A특성)

  • 이경섭;전동규;권영수;국상훈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.120-123
    • /
    • 1995
  • Maxwell-Displacement-Currnt-Measuring Technique(MDCM) is a simple system for displacement current measuring which consist with two electrodes to the electrometer, With this method, the displacement current flow only when the electric flux density change by the displacement of molecules or charge particles of membrance on the water surface. Thus, It is Possible to detect dynamic behavior of molecules of membrane without any electrical contact with molecule membrane. In this paper, We measure surface pressure, displacement current and dipole moment of phospholipid monolayers on the wafer surface with applied pressure by MDCM and We measured DTA(differential thermal analysis).

  • PDF

A Study on the Stimulus Reaction of PBLG (PBLG의 자격반응에 관한 연구)

  • Kim, Beyung-Geun;Chang, Hun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.719-722
    • /
    • 2002
  • The Displacement current measurement system used in this experiment because detecting the dynamic behavior of monolayers at the air-water interface is possible. It basically consists of a film balance, a pair of electrodes connected to each other through a sensitive ammeter. Here, one electrode is suspended in air and the other electrode is placed in the water. PBLG phase transformation measured by Maxwell-displacement-current-measurement method in surface of the water. Measured (surface pressure, displacement current and dipole moment) of monolayers of PBLG on the water surface. We measured displacement current that occur when changed temperature. Could know that displacement current is proportional in increase of temperature and great as experiment result.

  • PDF

An absolute displacement approach for modeling of sliding structures

  • Krishnamoorthy, A.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.6
    • /
    • pp.659-671
    • /
    • 2008
  • A procedure to analyse the space frame structure fixed at base as well as resting on sliding bearing using total or absolute displacement in dynamic equation is developed. In the present method, the effect of ground acceleration is not considered as equivalent force. Instead, the ground acceleration is considered as a known value in the acceleration vector at degree of freedom corresponding to base of the structure when the structure is in non-sliding phase. When the structure is in sliding phase, only a force equal to the maximum frictional resistance is applied at base. Also, in this method, the stiffness matrix, mass matrix and the damping matrix will not change when the structure enters from one phase to another. The results obtained from the present method using absolute displacement approach are compared with the results obtained from the analysis of structure using relative displacement approach. The applicability of the analysis is also demonstrated to obtain the response of the structure resting on sliding bearing with restoring force device.

A Study on the Main Spindle Deformatin characteristics by the Tool Weight Condition (공구 중량조건에 의한 주축변위 특성연구)

  • 김종관
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.121-128
    • /
    • 1996
  • In order to examine spindle deformation characteristics that affects the performance of dynmic cutting acuracy due to tool weight variation in a experimental spindle. thermal deformation value of operrative spindle by the axial displacement and the radial run out was measured according to the rise of spindle temperature through the laps of operation time and the change of rotational speed under the tool weight variation. A qualitative summary is as follows ; 1) The results show that the tool weight affcets the spindle temperature variation in a experimental spindle. 2) Radial run out and axial displacement was measured according to the rise of the spindle temperature and the performance of dynamic cutting accuracy was affected by the tool weight variation. 3) Axial displacement is 1.3 times larger than the radial run out in a experimental spindle conditions. 4) Axial displacement is continuously elongated when the tool weight is repeatly exchanged since the spindle themal deformaion, however, when the same tool weight is used. the displacement is still constant.

  • PDF

Exact Static Element Stiffness Matrix of Nonsymmetric Thin-walled Elastic Curved Beams (비대칭 박벽 탄성 곡선보의 엄밀한 정적 요소강도행렬)

  • Yoon Hee-Taek;Kim Moon-Young;Kim Young-Ki
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.1165-1170
    • /
    • 2005
  • In order to perform the spatial buckling analysis of the curved beam element with nonsymmetric thin-walled cross section, exact static stiffness matrices are evaluated using equilibrium equations and force-deformation relations. Contrary to evaluation procedures of dynamic stiffness matrices, 14 displacement parameters are introduced when transforming the four order simultaneous differential equations to the first order differential equations and 2 displacement parameters among these displacements are integrated in advance. Thus non-homogeneous simultaneous differential equations are obtained with respect to the remaining 8 displacement parameters. For general solution of these equations, the method of undetermined parameters is applied and a generalized linear eigenvalue problem and a system of linear algebraic equations with complex matrices are solved with respect to 12 displacement parameters. Resultantly displacement functions are exactly derived and exact static stiffness matrices are determined using member force-displacement relations. The buckling loads are evaluated and compared with analytic solutions or results by ABAQUS's shell element.

  • PDF

Displacement aging component-based stability analysis for the concrete dam

  • Huang, Xiaofei;Zheng, Dongjian;Yang, Meng;Gu, Hao;Su, Huaizhi;Cui, Xinbo;Cao, Wenhan
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.241-246
    • /
    • 2018
  • The displacement monitoring data series reconstruction method was developed under equal water level effects based on displacement monitoring data of concrete dams. A dam displacement variation equation was set up under the action of temperature and aging factors by optimized analysis techniques and then the dam displacement hydraulic pressure components can be separated. Through the dynamic adjustment of temperature and aging effect factors, the aging component isolation method of dam displacement was developed. Utilizing the isolated dam displacement aging components, the dam stability model was established. Then, the dam stability criterion was put forward based on convergence and divergence of dam displacement aging components and catastrophe theory. The validity of the proposed method was finally verified combined with the case study.

Study on Evaluating Displacement Tolerance of Sky-bridge in Tall Buildings (고층 스카이브리지의 변위 허용치 산정에 대한 연구)

  • Kim, Yun Gon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.4
    • /
    • pp.135-142
    • /
    • 2020
  • The new method for evaluating the displacement tolerance of sky-bridges with pin-roller type supports was proposed considering both return period of phase difference between connected buildings and geometrical characteristics of skybridge. Because displacement tolerance is relative value, which is most affected by the phase difference of the connected buildings, the dynamic response of these building with time history analysis should be evaluated. However, the initial phase could not be specified, so the result of displacement tolerance would be varied with respect to initial value. Thus, the tolerance can be reasonably evaluated SRSS calculation with design displacements based on statistical approach and of each building. In addition, the geometrical characteristics of sky-bridge should be considered because the transverse displacement of sky-bridge span causes the shear deformation of the bridge and longitudinal displacement tolerance cannot release the shear deformation. Therefore, the some pin-end support in sky-bridge should have longitudinal displacement tolerance to accommodate the shear deformation. By resolving this shear deformation, it is possible not only to accommodate transverse displacement, but also to avoid the complicated joint details such as both pot bearing and guided supports with shear key.

Measurement of Dynamic Deformation for Structure Using Linear Scan Sensor (Linear Scan Sensor를 활용한 구조물 동적 변위 측정)

  • 김감래;김명배;곽강율;김주용
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.39-42
    • /
    • 2003
  • In order to Impose an effective check on the existing methode of measurement, this study make an attempt to attach sensor on a structure, which can perceive a laser beam sent out from a light source at any place. This system makes it possible to measure an absolute of dynamic displacement according to accurately survey an amount of fluctuation in process of time. This result of experiment to compare the products by means of each method was satisfactory for identification. Accordingly these facts attest to the possibility of accurate measurement owing to gauge an dynamic displacement amount of structure.

  • PDF