• Title/Summary/Keyword: Dynamic cycle

Search Result 751, Processing Time 0.025 seconds

Joint Control of Duty Cycle and Beacon Tracking in IEEE 802.15.4 LR-WPAN (IEEE 802.15.4 저속 WPAN에서 듀티 사이클과 비콘 추적의 통합 제어)

  • Park, Sung-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.1
    • /
    • pp.9-16
    • /
    • 2016
  • Since most of devices in the IEEE 802.15.4 LR-WPAN are expected to operate on batteries, they must be designed to consume energy in a very conservative way. Two energy conservation algorithms are proposed for the LR-WPAN: DDC (Dynamic Duty Cycle) and DBT (Dynamic Beacon Tracking). The DDC algorithm adjusts duty cycle dynamically depending on channel conditions. The DBT algorithm switches beacon tracking mode on and off adaptively depending on traffic conditions. Combining the two algorithms reduces energy consumption more efficiently for a wide range of input loads, while maintaining frame delivery ratio and average delay at satisfactory levels.

Analysis of Dynamic Stability of Limit-cycle Navigation Method (Limit-cycle 항법의 동역학적 안정성 분석)

  • Kim, Dong-Han;Kang, Soo-Hyeok;Lee, Eun-Jin;Ko, Kuk-Won;Nam, Sang-Yep
    • 전자공학회논문지 IE
    • /
    • v.46 no.3
    • /
    • pp.33-41
    • /
    • 2009
  • Because the stability of obstacle avoidance ability is important for the safe operation of mobile robots, this paper deals with the analysis of dynamic stability of Limit-cycle navigation method that was proposed by authors. Limit-cycle navigation method is fast and easy to implement for fast moving mobile robots using limit-cycle characteristics of the 2nd-order nonlinear function. It can be applied to robots in dynamically changing environment such as the robot soccer. By adjusting the radius of the motion circle and the direction of the obstacle avoidance, the mobile robot can avoid the collision with obstacles and move to the destination point. The stability of Limit-cycle navigation method is analyzed with a linear model. To demonstrate the effectiveness and applicability, it is applied to the robot soccer Simulations and real experiments ascertain the merits of the proposed method.

Fatigue Life Evaluation of Spot Welding Including Loading Speed Effect (점용접부에서 하중속도효과를 고려한 피로수명평가)

  • ;;;;A. Shimamoto
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.32-37
    • /
    • 2003
  • Evaluation of fatigue strength on the spot welded part is very important for strength design of spot welded steel structures. In this paper, we could get the life cycle of the spot welded part using the lethargy coefficient obtained through the quasi-static tensile shear test for the specimen welded by current 10kA. The reliability evaluation of the life cycle is completed by comparing the life cycle calculated under the constant loading rate with the life cycle obtained by dynamic fatigue test. And then the result calculated by the lethargy coefficient is verified through the lift cycle calculated using the dynamic final tensile stress formula under the increased loading speed. This way can make save the time and cost in processing of predicting the life cycle of a structure.

Study on the Effects of System Parameters on the High Cycle Fatigue Life Based on Structural Dynamic.analysis of a Turbine Blade System (터빈 블레이드의 구조동역학해석에 근거한 시스템 인자들의 고 사이클 피로수명에 대한 영향도분석)

  • Kwon, Sung-Hun;Lim, Hong-Seok;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.89-94
    • /
    • 2006
  • In this paper, the effects of the system parameters on the high cycle fatigue life based on structural dynamic analysis of a turbine blade are investigated. Conventional studies have forcused on the fatigue life of turbine blades with specific system parameters. However, each parameter has statistical deviation because of inhomogeneity of material property, tolerance, and operating conditions. Therefore a methodology that estimates the effects of system parameter on the fatigue lift deviation is demonstrated.

  • PDF

The Effect of Entrepreneurship of SMEs on Corporate Capabilities, Dynamic Capability and Technical Performances in South Korea

  • Yi, Ho-Taek;Han, Chang-Nam;Cha, Yong-Bong
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.5 no.4
    • /
    • pp.135-147
    • /
    • 2018
  • There has been a recent increase in the interest towards founding companies and in line with the South Korean Government's policy on start-up support, discussions are rife about the effect of entrepreneurship on the management and performances of these companies. To enhance the competitiveness of SMEs, it is expedient to acquire and deploy consistent entrepreneurship, differentiate corporate resources, ensure the appropriate utilization of resources and the integration of such factors in response to the changing environment. This research examines relationships among entrepreneurship, three components of corporate capabilities, dynamic capability and technical performance based on resource-based view and the dynamic capability theory. The authors also investigate the moderating role of corporate life cycle. To test the hypothesis, we conducted a survey on 352 technologies -innovative SMEs located in South Korea via professional research institutes. The findings confirm the hypothesis that SMEs' entrepreneurship has a positive effect on three kinds of corporate capabilities (e.g., marketing, R&D, operations capability), and it had a positive effect on dynamic capability, whiles dynamic capability also had an influence on technical performances. The findings also confirmed the hypothesis that corporate life cycle moderates the relationship between dynamic capability and technical performances respectively. The research implications for both practitioners and academicians are discussed.

Exergy analysis of heat pump in consideration of its dynamic response (동특성을 고려한 열펌프의 엑서지 해석)

  • 장기태;남관우;정상권
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.155-164
    • /
    • 1998
  • A multi-type heat pump controls the mass flow rate of the working fluid to cope with variable heat loads when it is under dynamic load condition. This paper describes the exergy analysis associated with the dynamic response of heat pump. First, a basic heat pump cycle is examined at steady state to show the general trends of exergy changes in each process of the cycle. Entropy generation issue in the exchangers is discussed to optimize the heat pump cycle. Second, the performance of the inverter-driven heat pump is compared to that of the conventional one when the heat load is variable. Third, the exergy destruction rate associated with the ON/OFF operations of the heat pump is calculated by simulating the thermodynamic states of the condenser and the evaporator. The inefficiency of the ON/OFF operation during the transient period is quantitatively revealed by the exergy analysis.

  • PDF

Comparison of Operation Performance of LNG Reliquefaction Process according to Reverse Brayton Cycle and Claude Cycle

  • Shin, Young-Gy;Seo, Jung-A;Lee, Yoon-Pyo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.4
    • /
    • pp.135-140
    • /
    • 2009
  • A dynamic model to simulate LNG reliquefaction process has been developed. The model was applied to two candidate cycles for LNG reliquefaction process, which are Reverse Brayton and Claude cycles. The simulation was intended to simulate the pilot plant under construction for operation of the two cycles and evaluate their feasibility. According to the simulation results, both satisfy control requirements for safe operation of brazed aluminum plate-fin type heat exchangers. In view of energy consumption, the Reverse Brayton cycle is more efficient than the Claude cycle. The latter has an expansion valve in addition to the common facilities sharing with the Reverse Brayton cycle. The expansion valve is a main cause to the efficiency loss. It generates a significant amount of entropy associated with its throttling and increases circulation flow rates of the refrigerant and power consumption caused by its leaking resulting in lowered pressure ratio. It is concluded that the Reverse Brayton cycle is more efficient and simpler in control and construction than the Claude cycle.

Dynamic Performance Simulation of OTEC According to Seawater Temperature Change (해수온도변화에 따른 온도차발전시스템의 동적 성능 시뮬레이션)

  • Lim, Seung-Taek;Lee, Ho-saeng;Kim, Hyeon-Ju
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.34-40
    • /
    • 2018
  • In this paper, Performance of 1MW OTEC system using R32 with varying seawater temperature range is studied. Steady state cycle is designed and its output and generation efficiency were 1,014kW and 2.72%, respectively. Compared to dynamic cycle, system performance and change during long term operation is studied. The simulation is performed by decreasing surface seawater temperature from $29^{\circ}C$ to $25^{\circ}C$ with 20 minute of reaction time. Dynamic cycle with same condition applied to steady state cycle and it showed output and efficiency of 1,020kW and 2.75% respectively. Seawater temperature decreased from $29^{\circ}C$ and the vapor fraction of refrigerant decreased below 1 at $28^{\circ}C$. While the vapor fraction was above 1, the turbine output decreased by 0.017kW per second. After the seawater temperature reached $26.2^{\circ}C$, the turbine output decreased by 1.03kW per second. However, Driving the turbine below the saturation temperature caused the occurrence of surging and the influx of liquid refrigerant. When the liquid separator having a capacity of 1.0 m3 was used, the flow into the turbine was confirmed after 5 minutes from the first liquid refrigerant coming into the separator.

A Real-time Obstacle Avoidance of Mobile Robots using Limit-cycle and Vector Field Method (Limit-cycle과 벡터장법을 이용한 이동로봇의 실시간 장애물 회피)

  • Yun, Jae-Ho;Jie, Min-Seok;Lee, Kang-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.243-246
    • /
    • 2003
  • In this paper, we propose a novel navigation method combined limit-cycle method and the vector field method for avoidance of unexpected obstacles in the dynamic environment. The limit-cycle method is used to obstacle avoidance in front of the robot and the vector field method is used to obstacle avoidance in the side of robot. The proposed method is tested on pioneer 2-DX mobile robot. The simulations and experiments demonstrate in the effectiveness of the proposed method for navigation of a mobile robot in the complicated and dynamic environments.

  • PDF

Research on the Safety of Ship and Offshore Structure - on Low Cycle resonance of a Sihp in Severe Following Waves -

  • Hamamoto, M.;Kim, J.A.;Kwon, S.H.;Lee, S. K.;Jo, H.J.
    • Journal of Hydrospace Technology
    • /
    • v.1 no.1
    • /
    • pp.57-65
    • /
    • 1995
  • For the mechanism of ship capsizing, we can generally consider that it\`s caused due to pure loss of stability, parametric oscillation(low cycle resonance) of ship in waves and the broaching phenomena. Among them, low cycle resonance occurs due to the dynamic change of righting arm with respect to the relative position of ship to waves. The dynamic change depends on the encounter period of a ship in following waves. This paper discusses the following items : (1) An analytical expression of GZ curve varying with respect to the relative position of ship to waves, (2) Non-linear equation of motion describing low cycle resonance, (3) The effects of righting arm, stability range and encounter period on low cycle resonance.

  • PDF