• 제목/요약/키워드: Dynamic calibration system

검색결과 88건 처리시간 0.029초

관성측정장치의 오차계수 식별기법 및 실험 (IMU calibration technique and laboratory test)

  • 성상만;이달호;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.664-667
    • /
    • 1996
  • This paper presents the error parameter estimation technique for IMU(Inertial Measurement Unit) which is core sensor of INS(Inertial Navigation System) and verifies it via laboratory test. Firstly the error characteristic of gyroscope and accelerometer which is contained in IMU is examined and the error modelling is executed. The error of IMU can be divided into deterministic and random part, and the deterministic error can be divided into static and dynamic part. This paper consider the random part as constant. Secondly the error parameter estimation technique and following procedure for laboratory test is explained. Thirdly according to the test procedure the IMU test for static error is executed using 2-axis rate table and estimation result is presented with discussion about its validity.

  • PDF

INTERNATIONAL STANDARDISATION-MOVES TO COMPLETE THE MACHINE CALIBRATION PACKAGE

  • Blackshaw, Martin
    • 한국정밀공학회지
    • /
    • 제9권4호
    • /
    • pp.13-21
    • /
    • 1992
  • Standards concerning the determination of positioning accuracy and repeatability of numerically controlled(NC) machine tools have been published relentlessly over the last 20 years. Since the publication in 1988 of the International Standard 230-2 there has been a pronounced move, both at national and international standards level, to embrace further test procedures for a complete machine tool performance assessment. For example, measurements of angular (pitch, roll, and yaw) and straightness errors along linear axes are now commonplace and complement the existing positioning accuracy and repeatablity tests. More recently the subject of circularity evalutaion has also gained considerable interest. Here dynamic tests, using a kinematic ballbar or circular masterpiece, give an instant overview of the contouring ability of the machine in two axes at specific feedrates. This information is extremely important in optimising machining accuracy. This paper describes moves to complete the machine calibration package in national and international standardis- ation for the assessment of machine tool performance.

  • PDF

천리안위성 2A호 지구정지궤도위성 궤도결정 (Orbit Determination of GEO-KOMPSAT-2A Geostationary Satellite)

  • 김용래;이상철;김정래
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제13권2호
    • /
    • pp.199-206
    • /
    • 2024
  • The GEO-KOMPSAT-2A (GK2A) satellite, which was launched in December 2018, carries weather observation payloads and uses the image navigation and registration system to calibrate the observation images. The calibration system requires accurate orbit prediction data and depends on the accuracy of the orbit determination accuracy. In order to find a possible way to improve the current orbit determination accuracy of the GK2A flight dynamic subsystem module, orbit determination software was developed to independently evaluate the orbit determination accuracy. A comprehensive satellite dynamic model is applied for a batch-type least squares filter. When determining the orbit, thrust firing during station-keeping maneuvers and wheel-off loading maneuvers is taken into account. One month of GK2A ranging data were processed to estimate the satellite position on a daily basis. The orbit determination error was evaluated by comparing estimates during overlapping estimation intervals.

터빈형과 기어모터형 유량계의 동특성 검토 (An Investigationi into the Dynamic Characteristics of Turbine and Gear Motor Type Flowmeters)

  • 예용택
    • 한국생산제조학회지
    • /
    • 제9권3호
    • /
    • pp.83-89
    • /
    • 2000
  • In hydraulic control system turbine and gear motor type flowmeters are widely used to measure the flow rate under steady flow conditions. With the recent growth of interest in the measurement of instantaneous values of unsteady flow rate the test of the transient response of these flowmeters are in some significance. however an unsteady flow rate mea-surment and its calibration method with a fast response and a high accuracy have not beendeveloped. In this research particularly the dynamic characteristics of turbine and gear motor type flowmeters are investigated experimentally and simple mathematical models are proposed. The measured flow rate waveforms are compared with those by remote instan-taneous flow rate measurement method(RIFM) which has been developed by author and used for calibration As the result of frequency response test gain and phase between the measured flow rate waveforms by turbine type flowmeter and those estimated by RIFM are in good agreement up to 70Hz For the gear motor type flowmeter th simulated results by a math-ematical model proposed here agree well with the experiment nearly up to 100Hz. Also it if sound that the pressure drop across the flowmeter is increased in proportion to the frequency of the flow rate variation in a high frequency region of more than 100Hz. It can be explained that the dealy of gear motor type flowmeter in high frequency regionis mainly attributed to a first order delay consisting of the inertia of gears and internal leakage of the gear motor.

  • PDF

분석툴을 이용한 천리안2A 기상탑재체 복사 보정 파라미터 검증 (Verification of GEO-KOMPSAT-2A AMI Radiometric Calibration Parameters Using an Evaluation Tool)

  • 진경욱;박진형
    • 대한원격탐사학회지
    • /
    • 제36권6_1호
    • /
    • pp.1323-1337
    • /
    • 2020
  • 천리안2A호 AMI(Advanced Meteorological Imager) 복사 보정에 대한 검증은 탑재체의 기능 및 성능 점검뿐만 아니라, 탑재체 자료의 품질을 결정 짓는 중요한 요소이다. AMI 탑재체는 여섯 개의 가시 및 근적외 채널과 10개의 열적외 채널로 구성되어 있다. 가시/근적외 채널의 복사 성능을 대표하는 핵심적인 파라미터로는 SNR(Signal-to-Noise Ratio), 열적외채널의 경우는 NEdT(Noise Equivalent delta Temperature)를 들 수 있다. 다이나믹 레인지와 검출기의 반응도와 관련된 Gain 값 또한 복사 보정 성능과 관련된 중요한 파라미터이다. AMI 탑재체의 주요 복사 보정 성능 검증을 위해, 실시간 AMI자료 처리 시스템과는 별도의 오프라인 복사 성능 분석 툴을 개발하였다. 개발된 분석 툴을 이용하여 천리안2A호 발사 후 궤도상 시험 기간 동안 검증 작업을 수행하였다. 분석 툴을 통한 계산 결과는 탑재체 개발업체인 HARRIS사의 분석 값과 비교 검증하였다. AMI 복사 성능 검증 작업은 총 세차례로 나누어 AMI탑재체 양쪽 면인 Side1과 Side2에 대해 이루어졌다. 복사 성능 검증 결과 주요 복사 보정 파라미터들의 성능은 요구조건 값들을 크게 상회하는 우수한 성능을 보여 주었으며, AMI 복사 성능 분석 툴의 유효성이 입증되었다.

저진공에서 초고진공까지의 국가 진공표준 (National Vacuum Standards from Low to Ultra-high Vacuum)

  • 홍승수;임인태;신용현;정광화
    • 한국진공학회지
    • /
    • 제15권1호
    • /
    • pp.1-13
    • /
    • 2006
  • 한국표준과학연구원 진공연구실은 1983년 설립된 이후 초음파간섭 수은주압력계, 정적형 표준기 및 동적교정장치 등을 개발하여 저진공에서 초고진공까지 국가 진공표준의 확립 및 보급을 하고 있다. 본 연구에서는 각각의 진공표준기, 국제표준화기구의 권고에 의한 불확도 분석방법, 그리고 핵심측정표준 국제비교 및 국가간 상호비교 결과를 소개한다.

Design and characterization of a compact array of MEMS accelerometers for geotechnical instrumentation

  • Bennett, V.;Abdoun, T.;Shantz, T.;Jang, D.;Thevanayagam, S.
    • Smart Structures and Systems
    • /
    • 제5권6호
    • /
    • pp.663-679
    • /
    • 2009
  • The use of Micro-Electro-Mechanical Systems (MEMS) accelerometers in geotechnical instrumentation is relatively new but on the rise. This paper describes a new MEMS-based system for in situ deformation and vibration monitoring. The system has been developed in an effort to combine recent advances in the miniaturization of sensors and electronics with an established wireless infrastructure for on-line geotechnical monitoring. The concept is based on triaxial MEMS accelerometer measurements of static acceleration (angles relative to gravity) and dynamic accelerations. The dynamic acceleration sensitivity range provides signals proportional to vibration during earthquakes or construction activities. This MEMS-based in-place inclinometer system utilizes the measurements to obtain three-dimensional (3D) ground acceleration and permanent deformation profiles up to a depth of one hundred meters. Each sensor array or group of arrays can be connected to a wireless earth station to enable real-time monitoring as well as remote sensor configuration. This paper provides a technical assessment of MEMS-based in-place inclinometer systems for geotechnical instrumentation applications by reviewing the sensor characteristics and providing small- and full-scale laboratory calibration tests. A description and validation of recorded field data from an instrumented unstable slope in California is also presented.

Simultaneous Temperature and Velocity Fields Measurements near the Boiling Point

  • Doh, Deog-Hee;Hwang, Tae-Gyu;Koo, Bon-Young;Kim, Seok-Ro
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권5호
    • /
    • pp.531-542
    • /
    • 2007
  • Simultaneous measurement technique for temperature and velocity fields near a heated solid body has been constructed. The measurement system consists of a 3-late CCD color camera, a color image grabber, a 1ighting system, a host computer and a software for the whole quantification process. Thermo Chromic Liquid Crystals (TCLC) was used as temperature sensors. A neural network was used to get a calibration curve between the temperature and the color change of the TCLC in order to enhance the dynamic range of temperature measurement. The velocity field measurement was attained by the use of the fray-level images taken for the flow field, and by introducing the cross-correlation technique. The temperature and the velocity fields of the forced and the natural convective flows neat the surface of a cartridge heater were measured simultaneously with the constructed measurement system.

Parallel Multi-task Cascade Convolution Neural Network Optimization Algorithm for Real-time Dynamic Face Recognition

  • Jiang, Bin;Ren, Qiang;Dai, Fei;Zhou, Tian;Gui, Guan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권10호
    • /
    • pp.4117-4135
    • /
    • 2020
  • Due to the angle of view, illumination and scene diversity, real-time dynamic face detection and recognition is no small difficulty in those unrestricted environments. In this study, we used the intrinsic correlation between detection and calibration, using a multi-task cascaded convolutional neural network(MTCNN) to improve the efficiency of face recognition, and the output of each core network is mapped in parallel to a compact Euclidean space, where distance represents the similarity of facial features, so that the target face can be identified as quickly as possible, without waiting for all network iteration calculations to complete the recognition results. And after the angle of the target face and the illumination change, the correlation between the recognition results can be well obtained. In the actual application scenario, we use a multi-camera real-time monitoring system to perform face matching and recognition using successive frames acquired from different angles. The effectiveness of the method was verified by several real-time monitoring experiments, and good results were obtained.

Discrete element numerical simulation of dynamic strength characteristics of expanded polystyrene particles in lightweight soil

  • Wei Zhou;Tian-shun Hou;Yan Yang;Yu-xin Niu;Ya-sheng Luo;Cheng Yang
    • Geomechanics and Engineering
    • /
    • 제34권5호
    • /
    • pp.577-595
    • /
    • 2023
  • A dynamic triaxial discrete element numerical model of lightweight soil was established using the discrete element method to study the microscopic mechanism of expanded polystyrene (EPS) particles in the soil under cyclic loading. The microscopic parameters of the discrete element model of the lightweight soil were calibrated depending on the dynamic triaxial test hysteresis curves. Based on the calibration results, the effects of the EPS particles volume ratio and amplitude on the contact force, displacement field, and velocity field of the lightweight soil under different accumulated strains were studied. The results showed that the hysteresis curves of lightweight soil exhibit nonlinearity, hysteresis, and strain accumulation. The strain accumulated in remolded soil is mainly tensile strain, and that in lightweight soil is mainly compressive strain. As the volume ratio of EPS particles increased, the contact force first increased and then decreased, and the displacement and velocity of the particles increased accordingly. With an increase in amplitude, the dynamic stress of the particle system increased, and the accumulation rate of the dynamic strain of the samples also increased. At 5% compressive strain, the contact force of the particles changed significantly and the number of particles deflected in the direction of velocity also increased considerably. These results indicated that the cemented structure of the lightweight soil began to fail at a compressive strain of 5%. Thus, a compressive strain of 5% is more reasonable than the dynamic strength failure standard of lightweight soil.