• Title/Summary/Keyword: Dynamic boundary condition

Search Result 350, Processing Time 0.023 seconds

An Experimental Study on Low-Velocity Impact Test and Response of Composite Laminates (복합적층판의 저속충격시험 및 거동에 대한 실험적 연구)

  • 최익현;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.359-371
    • /
    • 1994
  • A drop weight type impact test system is designed and set up to experimentally investigate impact responses of composite laminates subjected to the low-velocity impact. Using the test system, the impact velocity and the rebound velocity of the impactor as well as the impact force history are measured. An error of the measured data due to a difference in measuring position of the sensor is corrected and, for the estimation of real contact force history, a method of correcting an error due to friction forces is developed. Experimental methods to fix the boundary edgy of laminate specimens in impact testing are investigated and the impact tests on the specimens fixed by those methods are performed. Impact force histories and dynamic strains measured from the tests are compared with numerical results from the finite element analysis using the contact law. Consequently, the nonlinear numerical results considering the large deflection effects are agreed with the experimental results better than the linear ones.

Seismic analysis of dam-foundation-reservoir coupled system using direct coupling method

  • Mandal, Angshuman;Maity, Damodar
    • Coupled systems mechanics
    • /
    • v.8 no.5
    • /
    • pp.393-414
    • /
    • 2019
  • This paper presents seismic analysis of concrete gravity dams considering soil-structure-fluid interaction. Displacement based plane strain finite element formulation is considered for the dam and foundation domain whereas pressure based finite element formulation is considered for the reservoir domain. A direct coupling method has been adopted to obtain the interaction effects among the dam, foundation and reservoir domain to obtain the dynamic responses of the dam. An efficient absorbing boundary condition has been implemented at the truncation surfaces of the foundation and reservoir domains. A parametric study has been carried out considering each domain separately and collectively based on natural frequencies, crest displacement and stress at the neck level of the dam body. The combined frequency of the entire coupled system is very less than that of the each individual sub-system. The crest displacement and neck level stresses of the dam shows prominent enhancement when coupling effect is taken into consideration. These outcomes suggest that a complete coupled analysis is necessary to obtain the actual responses of the concrete gravity dam. The developed methodology can easily be implemented in finite element code for analyzing the coupled problem to obtain the desired responses of the individual subdomains.

Development of Analytical Solutions on Velocities of Regular Waves Generated by Bottom Wave Makers in a Flume (바닥 조파장치가 설치된 수로에서 규칙파의 유속장에 관한 해석해 개발)

  • Jung, Jae-Sang;Lee, Changhoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.3
    • /
    • pp.58-71
    • /
    • 2022
  • Analytical solutions for two-dimensional velocities of regular waves generated by bottom wave makers in a flume were derived in this study. Triangular and rectangular bottom wave makers were adopted. The velocity potential was derived based on the linear wave theory with the bottom moving boundary condition, kinematic and dynamic free surface boundary conditions. Then, analytical solutions of two-dimensional particle velocities were derived from the velocity potential. The velocity potential and two-dimensional particle velocities which were derived as complex integral equations were numerically calculated. The solutions showed physically valid results as velocities of regular waves generated by bottom wave makers in a flume.

A study on the acoustic loads prediction of flight vehicle using computational fluid dynamics-empirical hybrid method (하이브리드 방법을 이용한 비행 중 비행체 음향하중 예측에 관한 연구)

  • Park, Seoryong;Kim, Manshik;Kim, Hongil;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.163-173
    • /
    • 2018
  • This paper performed the prediction of the acoustic loads applied to the surface of the flight vehicle during flight. Acoustic loads during flight arise from the pressure fluctuations on the surface of body. The conventional method of predicting the acoustic loads in flight uses semi-empirical method derived from theoretical and experimental results. However, there is a limit in obtaining the flow characteristics and the boundary layer parameters of the flight vehicle which are used as the input values of the empirical equation through experiments. Therefore, in this paper, we use the hybrid method which combines the results of CFD (Computational Fluid Dynamics) with semi-empirical methods to predict the acoustic loads acting on flight vehicle during flight. For the flight vehicle with cone-cylinder-flare shape, acoustic loads were estimated for the subsonic, transonic, supersonic, and Max-q (Maximum dynamic pressure) condition flight. For the hybrid method, two kind of boundary layer edge estimation methods based on CFD results are compared and the acoustic loads prediction results were compared according to empirical equations presented by various researchers.

Wave-Induced Soil Response around Submarine Pipeline (파랑작용에 의한 해저파이프라인 주변지반의 응답특성)

  • Hur, Dong-Soo;Kim, Chang-Hoon;Kim, Do-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.31-39
    • /
    • 2007
  • Recently, the nonlinear dynamic responses among waves, submarine pipeline and seabed have become a target of analyses for marine geotechnical and coastal engineers. Specifically, the velocity field around the submarine pipeline and the wave-induced responses of soil, such as stress and strain inside seabed, have been recognized as dominant factors in discussing the stability of submarine pipeline. The aim of this paper is to investigate nonlinear dynamic responses of soil in seabed, around submarine pipeline, under wave loading. In order to examine wave-induced soil responses, first, the calculation is conducted in the whole domain, including wave field and the seabed, using the VOF-FDM method. Then, velocities and pressures, which are obtained on the boundary between the wave field and the seabed, are used as the boundary condition to compute the wave-induced stress and strain inside seabed, using the poro-elastic FEM model, which is based on the approximation of the Biot's equations. Based on the numerical results, the characteristics of wave-induced soil responses around submarine pipeline are investigated, in detail, inrelation to relative separate distance of the submarine pipeline from seabed. Also, the velocity field around the submarine pipeline is discussed.

Theoretical analysis for determation of allowable free span of subsea pipeline (해저 배관의 허용 노출길이 산정에 대한 이론해석)

  • Jung Dong-Ho;Lee Yong-Doo;Park Han-Il
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.2
    • /
    • pp.54-62
    • /
    • 2003
  • The free span of a subsea pipeline due to seabed scouring can result in structural failure by severe ocean environmental loads and vortex induced vibrations. This Paper examines the safety of subsea pipelines with free spans under axial compressive load. The variation of allowable lengths of static and dynamic free spans is examined for generalized boundary conditions. The free span is modelled as a beam with an elastic foundations and the boundary condition is replaced by linear and rotational springs at each end. The static and dynamic free span curves are obtained with a function of non-dimensional parameters. A case study is carried out to introduce the application method of the curve. The results of this study can be usefully applied for the design of subsea pipelines with a free span.

  • PDF

Spectral Element Formulation for Analysis of Lamb Wave Propagation on a Plate Induced by Surface Bonded PZT Transducers (표면 부착형 PZT소자에 의해 유발된 판 구조물의 램파 전달 해석을 위한 스펙트럼 요소 정식화)

  • Lim, Ki-Lyong;Kim, Eun-Jin;Kang, Joo-Sung;Park, Hyun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1157-1169
    • /
    • 2008
  • This paper presents spectral element formulation which approximates Lamb wave propagation by PZT transducers bonded on a thin plate. A two layer beam model under 2-D plane strain condition is introduced to simulate high-frequency dynamic responses induced by a piezoelectric (PZT) layer rigidly bonded on a base plate. Mindlin-Herrmann and Timoshenko beam theories are employed to represent the first symmetric and anti-symmetric Lamb wave modes on a base plate, respectively. The Euler-Bernoulli beam theory and 1-D linear piezoelectricity are used to model the electro-mechanical behavior of a PZT layer. The equations of motions of a two layer beam model are derived through Hamilton's principle. The necessary boundary conditions associated with the electro-mechanical properties of a PZT layer are formulated in the context of dual functions of a PZT layer as an actuator and a sensor. General spectral shape functions of response field and the associated boundary conditions are obtained through equations of motions converted into frequency domain. Detailed spectrum element formulation for composing the dynamic stiffness matrix of a two layer beam model is presented as well. The validity of the proposed spectral element is demonstrated through numerical examples.

Studies on the Evaluation of Acoustical Properties of the Replaceable Species for Sounding Board by Vibration Test (진동시험(振動試驗)에 의한 대체향판수종(代替響板樹種)의 음향적(音響的) 성질(性質)의 평가(評價)에 관한 연구(硏究))

  • Kang, Chun-Won;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.71-80
    • /
    • 1991
  • This study was carried out to investigate replaceable species with the conventional sounding board sitka spruce. by comparing the dynamic properties such as density, dynamic Young's modulus and internal friction Dynamic Young's modulus. internal friction of longitudinal and radial direction measured in free mass-free boundary condition for facile vibration analysis and measured by forced vibration method. Dynamical properties of four species were measured on squared plate specimen that the four edges were hung vertically by threads and driven magnetically through an iron piece glued on the specimen, by the use of condenser microphone as vibration transducer, and analyzed by FFT analyzer. The results obtained were as follows: 1. Chaldni method using aluminum powder was proper to identify the vibration mode in the plate vibration and it was possible to verify the resornance mode. 2. It was considered that it was necessary to investigate the influence of adhesive part on the plate vibration when the sounding board was made by two or three small board adhesion. 3. It was considered that plate vibration method, which was a superior to the vibration test of beam, was suitable for selecting suounding board because dynamic Young's modulus and internal friction show different order according to longitudinal and radial direction. 4. Paulownia tomentosa Thunb.) Steudel has been considered to be replaceable species with sitka spruce because it has high dynamic Young's modulus compared with low density, low internal friction, and K value of Paulownia tomentosa (Thunb.) Steudel is greater than that of sitka spruce.

  • PDF

Effects of the Particle Electric Conductivity on the Aggregation of Unipolar Charged Nanoparticles (단극하전 나노입자의 응집성장 과정에서 입자의 전기전도도의 효과에 대한 연구)

  • Park, Hyung-Ho;Kim, Sang-Soo;Chang, Hyuk-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.173-180
    • /
    • 2003
  • Effects of the electric conductivity of particles were studied for the aggregation process of charged particles with a Brownian dynamic simulation in the free molecular regime. A periodic boundary condition was used for the calculation of the aggregation process in each cell with 500 primary particles of 16 nm in diameter. We considered two extreme cases, a perfect conductor and a perfect nonconductor. The electrostatic force on a particle in the simulation cell was considered as a sum of electrostatic forces from other particles in the original cell and its replicate cells. We assumed that aggregates were only charged with pre-charged primary particles. The morphological shape of aggregates was described in terms of the fractal dimension. The fractal dimension for the uncharged aggregate was D$_{f}$= 1.761. However, the fractal dimension decreased from 1.694 to 1.360 for the case of the perfect conductor, and from 1.610 to 1.476 for the case of the perfect nonconductor, with the increase of the average number of charges on the primary particle from 0.2 to 0.3. These values were smaller than that of the centered charge case.e.

Analysis of the Flood Level Variation through Bridge (교량에 의한 하천홍수위의 변동해석)

  • 한건연;조홍제
    • Water for future
    • /
    • v.26 no.4
    • /
    • pp.35-46
    • /
    • 1993
  • The variations of water surface elevation due to bridge are studied using one_dimensional dynamic wave equation. The preissmann scheme is used to solve the dynamic wave equation and the bridges was treated as internal boundary conditions. Main causes of bridge backwater are the proportion of the contracted area due to bridge, roughness coefficient and discharge coefficient. The effect of discharge coefficient in weir flow condition is comparatively small. This model is verified by applying to the Suyoung River. which suffered a severe damage by typoon Gladys. The rise of water level through bridge is 1.53-1.08m in the reach of 4.25-6.20km from the downstream of river. The simulation results of the model have good agreements with the observed data.

  • PDF