• Title/Summary/Keyword: Dynamic boundary condition

Search Result 350, Processing Time 0.029 seconds

Dynamic Soaring Optimal Path Following with Time-variant Horizontal Wind Model (시변 수평풍 모델을 적용한 동적 활공 최적 궤적 추종)

  • Park, SeungWoo;Han, SeungWoo;Kim, Linkeun;Ko, Sangho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.72-80
    • /
    • 2021
  • Albatross uses dynamic soaring technique to obtain energy from horizontal winds and fly long distances without flapping. These dynamic soaring technique can be applied to manned/unmanned aircraft to reduce the components required for the aircraft and achieve light weight and small volume to effectively perform a given task. In this paper, to simulate the dynamic soaring technique of Albatross, we defined the optimization problem and set each boundary condition to derive the optimal flight trajectory and carry out simulations to follow it. In particular, to model dynamic soaring simulations more closely with reality, we proposed a horizontal wind model that changes every moment. This identifies and analyzes the effect of the time-variable horizontal wind model on the dynamic soaring mission of unmanned aircraft.

Free surface effects on 2-D airfoils and 3-D wings moving over water

  • Bal, Sakir
    • Ocean Systems Engineering
    • /
    • v.6 no.3
    • /
    • pp.245-264
    • /
    • 2016
  • The iterative boundary element method (IBEM) developed originally before for cavitating two-dimensional (2-D) and three-dimensional (3-D) hydrofoils moving under free surface is modified and applied to the case of 2-D (two-dimensional) airfoils and 3-D (three-dimensional) wings over water. The calculation of the steady-state flow characteristics of an inviscid, incompressible fluid past 2-D airfoils and 3-D wings above free water surface is of practical importance for air-assisted marine vehicles such as some racing boats including catamarans with hydrofoils and WIG (Wing-In-Ground) effect crafts. In the present paper, the effects of free surface both on 2-D airfoils and 3-D wings moving steadily over free water surface are investigated in detail. The iterative numerical method (IBEM) based on the Green's theorem allows separating the airfoil or wing problems and the free surface problem. Both the 2-D airfoil surface (or 3-D wing surface) and the free surface are modeled with constant strength dipole and constant strength source panels. While the kinematic boundary condition is applied on the airfoil surface or on the wing surface, the linearized kinematic-dynamic combined condition is applied on the free surface. The source strengths on the free surface are expressed in terms of perturbation potential by applying the linearized free surface conditions. No radiation condition is enforced for downstream boundary in 2-D airfoil and 3-D wing cases and transverse boundaries in only 3-D wing case. The method is first applied to 2-D NACA0004 airfoil with angle of attack of four degrees to validate the method. The effects of height of 2-D airfoil from free surface and Froude number on lift and drag coefficients are investigated. The method is also applied to NACA0015 airfoil for another validation with experiments in case of ground effect. The lift coefficient with different clearance values are compared with those of experiments. The numerical method is then applied to NACA0012 airfoil with the angle of attack of five degrees and the effects of Froude number and clearance on the lift and drag coefficients are discussed. The method is lastly applied to a rectangular 3-D wing and the effects of Froude number on wing performance have been investigated. The numerical results for wing moving under free surface have also been compared with those of the same wing moving above free surface. It has been found that the free surface can affect the wing performance significantly.

Development of Analytical Model of Spindle and Rack Gear Systems for Knuckle Boom Crane (굴절식 크레인의 스핀들과 랙 기어 응력 해석 모델 개발)

  • An, Junwook;Lee, Kwang Hee;Gyu, Yusung;Jo, Je Sang;Lee, Chul Hee
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.23-29
    • /
    • 2017
  • In this study, a flexible multi-body dynamic simulation model of a knuckle boom crane is developed to evaluate the stress of spindle and rack gears under dynamic working conditions. It is difficult to predict potential critical damage to a knuckle boom crane if only the static condition is considered during the development process. To solve this issue, a severe working scenario (high speed with heavy load) was simulated as a boundary condition for testing the integrity of the dynamic simulation model. The crane gear model is defined as a flexible body so contact analysis was performed. The functional motion of a knuckle boom crane is generated by applying forces at each end of the rack gear, which was converted from hydraulic pressure measured for the experiment. The bending and contact stress of gears are theoretically calculated to validate the simulation model. In the simulation, the maximum stress of spindle and rack gears are observed when the crane abruptly stops. Peak impact force is produced at the contact interface between pinion and rack gears due to the inertia force of the boom. However, the maximum stress (bending/contact) of spindle and rack are under the yield stress, which is safe from damage. By using the developed simulation model, the experiment process is expected to be minimized.

A Study of Characteristics on Weathering for Decomposed Granite Soils in Cutting Slope (화강토 지반 절취사면의 풍화특성에 관한 연구)

  • Lee, Song;Kim, Ju-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.451-458
    • /
    • 2001
  • The purpose of this study was to evaluate shear parameters on cutting slope of weathered granite soils by using small dynamic cone penetration test on the very moment of its cutting. The results were : On the relations among N$\_$c/, Li, and CEC, the condition of Li>6%, CEC>14(meq/100g) corresponds to that of N$\_$c/ values of 2∼30, and 3<CEC<14(meq/100g) to N$\_$c/=30∼50. Comparing the smallest penetration depth from two small dynamic cone penetration tests done at 5m below from the top of the slope on April 15th, October 31t. there was a l0cm difference. So we could find out the degree of weathering on the slope. And dividing the difference by 190 days (the whole testing time), we could know it's being weathered 0.052mm each day. The more N. value increases, the more shear parameters(internal friction angle ; $\phi$, cohesion : c) increase at a standard pressure($\sigma$>32㎪). So the condition of N$\_$c/=2∼50 corresponds to that of $\phi$=27∼50, c=12∼49㎪. From the above testing results, the N$\_$c/ values more correspond to $\phi$ values than c values. In conclusion, this study suggests that on small dynamic cone penetration test a penetration boundary line of 5 centimeters is decided at around Li=4%, CEC=3(meq/100g) which is classified as a strong weathering soil. It also shows that as Li increases CEC increases as well, while N$\_$c/ decreases.

  • PDF

Dynamics of high-speed train in crosswinds based on an air-train-track interaction model

  • Zhai, Wanming;Yang, Jizhong;Li, Zhen;Han, Haiyan
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.143-168
    • /
    • 2015
  • A numerical model for analyzing air-train-track interaction is proposed to investigate the dynamic behavior of a high-speed train running on a track in crosswinds. The model is composed of a train-track interaction model and a train-air interaction model. The train-track interaction model is built on the basis of the vehicle-track coupled dynamics theory. The train-air interaction model is developed based on the train aerodynamics, in which the Arbitrary Lagrangian-Eulerian (ALE) method is employed to deal with the dynamic boundary between the train and the air. Based on the air-train-track model, characteristics of flow structure around a high-speed train are described and the dynamic behavior of the high-speed train running on track in crosswinds is investigated. Results show that the dynamic indices of the head car are larger than those of other cars in crosswinds. From the viewpoint of dynamic safety evaluation, the running safety of the train in crosswinds is basically controlled by the head car. Compared with the generally used assessment indices of running safety such as the derailment coefficient and the wheel-load reduction ratio, the overturning coefficient will overestimate the running safety of a train on a track under crosswind condition. It is suggested to use the wheel-load reduction ratio and the lateral wheel-rail force as the dominant safety assessment indices when high-speed trains run in crosswinds.

Effect of Rock Discontinuities on Dynamic Shear Stress Wave (암반 불연속면이 동적 전단응력파에 미치는 영향)

  • Son, Moorak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.25-32
    • /
    • 2018
  • This paper investigates the effect of rock discontinuities on a shear stress wave that is induced by earthquake or blasting and provides the result of numerical parametric studies. The numerical tests of different conditions of rock and discontinuity have been carried out after confirming that the numerical approach is valid throughout a verification analysis from which the test results were compared with a theoretical solution. In-situ stress condition was considered as a rock condition and internal friction angle and cohesive value, which are the shear strength parameters, were considered as discontinuities condition. The joint inclination angle was also taken into account as a parameter. With the various conditions of different parameters, the test results showed that a shear stress wave propagating through a mass is highly influenced by the shear strength of discontinuities and the condition of joint inclination angle as well as in-situ stress. The study results indicate that when earthquake or blasting-induced dynamic loading propagates through a jointed rock mass or a stratified soil ground the effect of in-situ stress and discontinuities including a stratum boundary should be taken into account when evaluating the dynamic effect on nearby facilities and structures.

Numerical Simulation of Dynamic Soil-pile Interaction for Dry Condition Observed in Centrifuge Test (원심모형실험에서 관측된 건조 지반-말뚝 동적 상호작용의 수치 모델링)

  • Kown, Sun-Yong;Kim, Seok-Jung;Yoo, Min-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.4
    • /
    • pp.5-14
    • /
    • 2016
  • Numerical simulation of dynamic soil-pile-structure interaction embedded in a dry sand was carried out. 3D model of the dynamic centrifuge model tests was formulated in a time domain to consider nonlinear behavior of soil using the finite difference method program, FLAC3D. As a modeling methodology, Mohr-Coulomb criteria was adopted as soil constitutive model. Soil nonlinearity was considered by adopting the hysteretic damping model, and an interface model which can simulate separation and slip between soil and pile was adopted. Simplified continuum modeling (Kim et al., 2012) was used as boundary condition to reduce analysis time. Calibration process for numerical modeling results and test results was performed through the parametric study. Verification process was then performed by comparing numerical modeling results with another test results. Based on the calibration and validation procedure, it is identified that proposed modeling method can properly simulate dynamic behavior of soil-pile system in dry condition.

A Study on the Dynamic Characteristics of Composite Deck Plate According to the Modification of Boundary Conditions (경계조건의 조절에 따른 합성 데크플레이트 슬래브의 거동특성에 관한 연구)

  • 김우영;정은호;엄철환;김희철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.371-376
    • /
    • 1998
  • As the requirement of high-rise buildings in big cities increases, steel structural system becomes more popular in spite of the relatively higher material cost compared to that of the concrete structural system. Most of the steel structure adopts metal deck floor system because of the easiness in construction. However, the metal deck floor system has a weakness on vibration which became very important factor in office buildings, hotels and residential buildings as the more sensitive machines being used. Therefore, most, of the building codes in many countries restrict the natural frequency of the each floor should be higher than or equal to 15 Hz. Floor vibration of the KEM deck composite floor system which has been , developed recently from the engineers and scientists in Korea was measured. Also, the simplified analytical derivation of natural frequency for each floor was studied according to the measured natural frequency for each different boundary condition of the floor. As the length of the slab gets bigger, the natural frequency of the slab becomes lower even though the structural designer still considers it as a one-way slab.

  • PDF

A Study on Dynamic Characteristics of Hydraulic Transmission Line by Finite Difference Method (有限差分法을 利용한 油壓管路의 特性에 관한 硏究)

  • 오철환;정선국;송창섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.15-24
    • /
    • 1986
  • Pressure trasients must deal with safety problem of system. For identification of physical situation that can and method of limiting surges are essential consideration in sucessful design. The finite difference equation by method of characteristics are derived from the governing equation of unsteady flow in a pipe, and solved by using boundary condition derived. A computer program which can simulate general hydraulic system is developed by using finite difference equations and boundary conditions derived. The sumulated resulted by developed computer program are in fair agreement with experiment result.

Free vibration analysis of double split beams (이중 층상균열보의 자유진동해석)

  • Han, B.K;Lee, S.H
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2008-2018
    • /
    • 1997
  • In this study, free vibration analysis of double through-the-width split beam is studied based on the author's earlier work. Each segment which constructs double through-the-width split beam is considered as Timoshenko beam. The effect of coupling between longitudinal and transverse vibration on the natural frequencies of split beams is considered. Data acquisition and modal test of double split beam for clamped-free boundary condition are carried out. Experimental and numerical results obtained by ANSYS were compared with the calculated data by present theory and their comparisons give good agreement with one another. The influences of the size and location of double split, shear deformation, and boundary conditions on the natural frequencies are demonstrated for illustrative purpose. Effects of double split on the dynamic characteristics of beams can be used to detect the size and the location of damages in structures.