• 제목/요약/키워드: Dynamic boundary condition

검색결과 350건 처리시간 0.023초

A study on the dynamic instabilities of a smart embedded micro-shell induced by a pulsating flow: A nonlocal piezoelastic approach

  • Atabakhshian, Vahid;Shooshtaria, Alireza
    • Advances in nano research
    • /
    • 제9권3호
    • /
    • pp.133-145
    • /
    • 2020
  • In this study, nonlinear vibrations and dynamic instabilities of a smart embedded micro shell conveying varied fluid flow and subjected to the combined electro-thermo-mechanical loadings are investigated. With the aim of designing new hydraulic sensors and actuators, the piezoelectric materials are employed for the body and the effects of applying electric field on the stability of the system as well as the induced voltage due to the dynamic behavior of the system are studied. The nonlocal piezoelasticity theory and the nonlinear cylindrical shell model in conjunction with the energy approach are utilized to mathematically modeling of the structure. The fluid flow is assumed to be isentropic, incompressible and fully develop, and for more generality of the problem both steady and time dependent flow regimes are considered. The mathematical modeling of fluid flow is also carried out based on a scalar potential function, time mean Navier-Stokes equations and the theory of slip boundary condition. Employing the modified Lagrange equations for open systems, the nonlinear coupled governing equations of motion are achieved and solved via the state space problem; forth order numerical integration and Bolotin's method. In the numerical results, a comprehensive discussion is made on the dynamical instabilities of the system (such as divergence, flutter and parametric resonance). We found that applying positive electric potential field will improve the stability of the system as an actuator or vibration amplitude controller in the micro electro mechanical systems.

지반-말뚝 동적 상호 작용 평가를 위한 1g 진동대 실험의 수치 모델링 (Numerical Modeling of 1g Shaking Table Model Pile Tests for Evaluating Dynamic Soil-Pile Interaction)

  • 오만교;김성환;한진태;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.173-183
    • /
    • 2010
  • Numerical analysis using a three dimensional finite element program(ABAQUS) is a powerful method which can evaluate the soil-pile-structure interaction under the dynamic loading and reduce the computation time significantly, but has not be widely used because modeling a soil-pile system and setting the parameter for the entire model are difficult and a three dimensional finite element program is not user friendly. However, a three dimensional finite element program is expected to be widely used because of advance in research of modeling technique and development of the modeling and visualization. In this study, ABAQUS is used to simulate the 1g shaking table model pile test, and the numerical results are compared with the 1g shaking table test results. The application about the soil stiffness and boundary condition change is estimated and then parametric study for various input acceleration amplitudes, various input frequencies, and various surcharge is carried out.

  • PDF

비등방성 복합적층판 및 쉘의 고차전단변형을 고려한 비감쇄 동적응답 (Undamped Dynamic Response of Anisotropic Laminated Composite Plates and Shell Structures using a Higher-order Shear Deformation Theory)

  • 윤석호;한성천;장석윤
    • 한국강구조학회 논문집
    • /
    • 제9권3호통권32호
    • /
    • pp.333-340
    • /
    • 1997
  • 본 연구에서는 복합재료로 구성된 복합적층판 및 쉘에 대하여 3차 전단 변형이론을 이용한 변위를 가정하여 단순지지 경계조건을 만족하는 변위형상함수를 퓨리예급수로 전개하고 동적 평형 방정식을 유도하여 뉴마크의 수치적분법을 사용하여 단면특성계수, 재료의 특성, 층의 배열에 따른 복합적층판 및 쉘의 비감쇄 동적응답특성을 연구하였다.

  • PDF

지표포화지역-중간류유출-흙수분저류량 관계: II. 동적 분석 (Surface Saturation Area-Subsurface Outflow-Soil Moisture Storage Relationships: II. Dynamic Analysis)

  • 이도훈;이은태
    • 물과 미래
    • /
    • 제29권2호
    • /
    • pp.143-151
    • /
    • 1996
  • 중간류 유출, 지표표화지역, 흙수분저류량들의 동적 반응을 Richards 방정식을 이용한 수치실험을 통하여 유도하였다. 그리고 수치실험에서 경사면 모양, 토양종류, 경계조건 등을 변화시켜서 지표포화지역-중간류유출 동적 관계 및 지표포화지역-흙수분저류량 동적 관계를 결정하였다. 모의결과에 의하면, 지표포화지역-중간류유출 동적 관계 및 지표포화지역-흙수분 저류량 동적 관계는 각 관계들의 정상류 관계에 의해 근사적으로 설명될 수 있다. 그리고 강우양상이 단순한 펄스입력일지라도 중간류유출 및 지표포화지역의 동적 반응은 중복첨두치에 의해 특징지어지며, 중복첨두치의 발생에 대한 물리적 메케니즘은 "variable source area"의 개념을 이용하여 설명하였다.용하여 설명하였다.

  • PDF

유한요소법을 이용한 평판의 동특성 연구 (Analysis of Dynamic Characteristics of Rectangular Plates by Finite Element Method)

  • 태순호;이태연;허문회
    • 한국안전학회지
    • /
    • 제7권2호
    • /
    • pp.30-41
    • /
    • 1992
  • Analysis of Dynamic Characterisocs of Rectangular Plate by Finite Element Method. Dynamic characteristics of a rectangular plate with opening in it is studied by finite element method. To investigate these characteristics 12 degrees of freedom membrane finite element in used. The rectangular membrane finite elements are defined by specifying geometry, internal displacement functions and strain-displacement relations. Then, the governing equation for the finite element is derived by energy method. To derive the mass matrix and stiffness matrix of the element, expressions for strain and kineic energy in terms of the node displacement are generated. In constructing the overall structure matrix, the matrix of each elements are superposed and partitioned by applying the given boundary condition to obtain a nonslngular matrix. To find the natural freguencies and viration modes, the eigen values and the corresponding eigen vectors are computed by the computer using well known Jacobi power method. In order to verify the capability of the membrane finite element, a flat rectangular plate is analyzed first, and the result is compared with well known analytical results to show the good agreement. A rectangular plate with opening in It is analyzed with the same finite element. The results are presented in this paper. Unfortunately, the literature study could not provide with some results to compare, but the results reveal that the output of this research is phlslcally reasonable. And the results of this research are useful not only in practice but also for the future experimental research in comparison purpose.

  • PDF

CNT의 동적 거동 해석을 위한 정전기력의 선형화 (Linearized of Electrostatic Force in the Carbon Nanotube for Dynamic Behavior Analysis)

  • 이종길
    • 대한공업교육학회지
    • /
    • 제30권2호
    • /
    • pp.115-122
    • /
    • 2005
  • For an analysis of dynamic behavior in carbon nanotube(CNT) which is widely used as micro and nano-sensors, an electrostatic force of CNT was investigated. For larger gaps in between sensor and electrode the van der Waals force can be ignored. The boundary condition in the CNT was assumed to clamped-clamped case at both ends. In this paper electrostatic force is expressed as linear equation along deflection using Taylor series. The first and second terms(${\zeta}_0$ and ${\zeta}_1$) of the linear equation are analyzed. Based on the simulation results nondimensional number ${\Phi}_0$ and ${\Phi}_1$ which came from ${\zeta}_0$ and ${\zeta}_1$ were decreased according to the increment of the gap. Reduction ratio of the second term ${\zeta}_1$ is increased up to 99% along to the increment of the gap. The higher order terms can be ignored and therefore, electrostatic force can be expressed using the first two terms of the linear equation. This results play an important role in analyzing the nonlinear dynamic behavior of the CNT as well as the pull-in voltage of simply supported switches.

Analytic solution of Timoshenko beam excited by real seismic support motions

  • Kim, Yong-Woo
    • Structural Engineering and Mechanics
    • /
    • 제62권2호
    • /
    • pp.247-258
    • /
    • 2017
  • Beam-like structures such as bridge, high building and tower, pipes, flexible connecting rods and some robotic manipulators are often excited by support motions. These structures are important in machines and structures. So, this study proposes an analytic method to accurately predict the dynamic behaviors of the structures during support motions or an earthquake. Using Timoshenko beam theory which is valid even for non-slender beams and for high-frequency responses, the analytic responses of fixed-fixed beams subjected to a real seismic motions at supports are illustrated to show the principled approach to the proposed method. The responses of a slender beam obtained by using Timoshenko beam theory are compared with the solutions based on Euler-Bernoulli beam theory to validate the correctness of the proposed method. The dynamic analysis for the fixed-fixed beam subjected to support motions gives useful information to develop an understanding of the structural behavior of the beam. The bending moment and the shear force of a slender beam are governed by dynamic components while those of a stocky beam are governed by static components. Especially, the maximal magnitudes of the bending moment and the shear force of the thick beam are proportional to the difference of support displacements and they are influenced by the seismic wave velocity.

Optimization dynamic responses of laminated multiphase shell in thermo-electro-mechanical conditions

  • Fan, Linyuan;Kong, Degang;Song, Jun;Moradi, Zohre;Safa, Maryam;Khadimallah, Mohamed Amine
    • Advances in nano research
    • /
    • 제13권1호
    • /
    • pp.29-45
    • /
    • 2022
  • The optimization for dynamic response associated with a cylindrical shell which is made of laminated composites embedded in a piezoelectric layer which is subjected to temperature rises and is resting on an elastic foundation is investigated for the first time. The first shear order theory (FSDT) is utilized in order to obtain the strain relations of the shell. Then, using the energy method, the equations of motions as well as boundary condition of the problem are attained. The formulation of this study together with the solution procedure which is a numerical solution method, differential quadrature method (DQM) is validated using other researches. This paper presents a thorough study on the parameters which impacts the vibration frequency of the laminated shell. The results of this paper shows that any type of laminated composite shell can reduce the vibration frequency providing that the angle related to layer are higher than 85 degrees. Also, in order to reduce the effect of temperature rises, the laminated composites instead of orthotropic one can be used.

랜덤 진동 시험 및 해석 기법을 이용한 무인 비행체의 비행 진동 환경 규격 연구 (A Study on the Flight Vibration Environmental Specification of Unmanned Flying Vehicle using Random Vibration Test and Analysis Methods)

  • 최장섭;오동호
    • 한국군사과학기술학회지
    • /
    • 제25권6호
    • /
    • pp.596-605
    • /
    • 2022
  • In this study, analysis of dynamic characteristics and flight vibration was performed to unmanned aerial vehicles. The analysis model was supplemented by performing a dynamic characteristic test and a random vibration test using manufactured dummy aerial vehicle. For the dynamic characteristic test, a bungee cable was used to implement the free end boundary condition. Prior to the flight vibration test using a multiple electric shaker, a random vibration test was performed to predict the excitation force during the actual flight vibration test. It was judged that the actual test could be predicted more accurately by supplementing the analysis model from the test results. In addition, it was possible to determine the feasibility of the test by predicting the excitation force of the flight vibration test.

웨이블릿 해석을 이용한 콘크리트의 동탄성계수 추정 및 응용 (Prediction and Application of the Dynamic Modulus of Elasticity of Concrete Using the Wavelet Analysis)

  • 정범석
    • 콘크리트학회논문집
    • /
    • 제22권6호
    • /
    • pp.843-850
    • /
    • 2010
  • 콘크리트의 동탄성계수는 KS F 2437에 규정된 바와 같이 탄성파 비파괴시험인 충격반향기법에 따라 측정할 수 있다. 자유단 경계조건에서의 콘크리트 공시체에 대한 종방향 고유진동수를 웨이블릿 변환이론을 적용하여 평가하였다. 웨이블릿 변환은 순수한 스펙트럼 해석뿐만 아니라 시간영역에서의 분해신호를 추출하는데 있어 시간-주파수 공간에서의 실제 신호형상을 제공하는 장점을 갖고 있다. 이 실험에 적용된 배합비를 갖는 콘크리트의 경우에 동탄성계수와 정탄성계수의 평가 결과가 큰 차이를 나타내지 않아 일반적으로 알려져 있는 정도는 아닌 것으로 판단된다. 충격반향기법에서 결정된 동탄성계수와 정적시험에서 결정된 정탄성계수는 변형률 정도를 고려하여 비교하면 비교적 서로 잘 일치하며 이 실험에서의 동탄성계수는 평균변형률 $1.04{\times}10^{-4}$에서의 접선탄성계수와 같은 것으로 평가되었다.