• Title/Summary/Keyword: Dynamic behavior

Search Result 4,611, Processing Time 0.032 seconds

Development of dynamic behavior of the novel composite T-joints: Numerical and experimental

  • Mokhtari, Madjid;Shahravi, Morteza;Zabihpoor, Mahmood
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.385-400
    • /
    • 2018
  • In this paper dynamic behavior (modal analysis and dynamic transient response) of a novel sandwich T-joint is numerically and experimentally investigated. An epoxy adhesive is selected for bonding purpose and making the step wise graded behavior of adhesive region. The effect of the step graded behavior of the adhesive zone on dynamic behavior of a sandwich T-joint is numerically studied. Finite element analysis (FEA) of the T-joints with carbon fiber reinforced polymer (CFRP) face-sheets is performed by ABAQUS 6.12-1 FEM code software. Modal analysis and dynamic half-sine transient response of the sandwich T-joint are presented in this paper. Two verification processes employed to verify the dynamic modeling of the manufactured sandwich panels and T-joint modeling. It has been shown that the step wise graded adhesive zone cases have changed the second natural frequency by about 5%. Also, it has been shown that the different arranges in the step wise graded adhesive zone significantly affect the maximum stresses due to transient dynamic loading by 1112% decrease in maximum peel stress and 691.9% decrease in maximum shear stress on the adhesive region.

Dynamic Behavior of Timoshenko Beam with Crack and Moving Mass (크랙과 이동질량이 존재하는 티모센코 보의 동특성)

  • Yoon Han Ik;Choi Chang Soo;Son In Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.143-151
    • /
    • 2005
  • This paper study the effect of open cracks on the dynamic behavior of simply supported Timoshenko beam with a moving mass. The influences of the depth and the position of the crack in the beam have been studied on the dynamic behavior of the simply supported beam system by numerical method. Using Lagrange's equation derives the equation of motion. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modeled as a rotational spring. This flexibility matrix defines the relationship between the displacements and forces on the crack section and is derived by the applying fundamental fracture mechanics theory. As the depth of the crack is increased the mid-span deflection of the Timoshenko beam with the moving mass is increased. And the effects of depth and position of crack on dynamic behavior of simply supported beam with moving mass are discussed.

Influence of Tip Mass and Moving Mass on Dynamic Behavior of Cantilever Pope with Double-crack (이중크랙을 가진 외팔 파이프의 동특성에 미치는 끝단질량과 이동질량의 영향)

  • Son In-Soo;Yoon Han-Ik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.483-491
    • /
    • 2005
  • In this paper a dynamic behavior of a double-cracked cantilever pipe with the tip mass and a moving mass is presented. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by using Lagrange's equation. The influences of the moving mass, the tip mass and double cracks have been studied on the dynamic behavior of a cantilever pipe system by numerical method. The cracks section are represented by the local flexibility matrix connecting two undamaged beam segments. Therefore, the cracks are modelled as a rotational spring. This matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. We investigated about the effect of the two cracks and a tip mass on the dynamic behavior of a cantilever pipe with a moving mass.

A large-scale test of reinforced soil railway embankment with soilbag facing under dynamic loading

  • Liu, Huabei;Yang, Guangqing;Wang, He;Xiong, Baolin
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.579-593
    • /
    • 2017
  • Geosynthetic reinforced soil retaining walls can be employed as railway embankments to carry large static and dynamic train loads, but very few studies can be found in the literature that investigate their dynamic behavior under simulated wheel loading. A large-scale dynamic test on a reinforced soil railway embankment was therefore carried out. The model embankment was 1.65 meter high and designed to have a soilbag facing. It was reinforced with HDPE geogrid layers at a vertical spacing of 0.3 m and a length of 2 m. The dynamic test consisted of 1.2 million cycles of harmonic dynamic loading with three different load levels and four different exciting frequencies. Before the dynamic loading test, a static test was also carried out to understand the general behavior of the embankment behavior. The study indicated the importance of loading frequency on the dynamic response of reinforced soil railway embankment. It also showed that toe resistance played a significant role in the dynamic behavior of the embankment. Some limitations of the test were also discussed.

Dynamic Behavior Characteristics of Three-Story Stone Pagoda at Cheollongsa Temple Site by Earthquake (지진에 의한 천룡사지 삼층석탑의 동적거동 특성)

  • Kim, Ho Soo;Kim, Dong Kwan;Jeon, Geon Woo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.305-314
    • /
    • 2021
  • The Gyeongju and Pohang earthquakes caused damages to many cultural properties; particularly, stone pagoda structures were significantly damaged among masonry cultural properties. To preserve these structures, it is necessary to understand their dynamic behavior characteristics under earthquakes. Analyses on such areas as deformation, frequency, maximum acceleration, permanent displacement, sliding, and rocking have to be performed. Although many analytical studies have already been conducted, dynamic behavior studies based on experiments are insufficient. Therefore, this study analyzed dynamic behavior characteristics by performing a shaking table experiment on a three-story stone pagoda structure at the Cheollongsa temple site damaged by the Gyeongju earthquake. As a result of the experiment, the displacements of stylobates did not occur significantly, but the tower body parts rotated. In particular, the rotation of the 1F main body stone was relatively larger than that of the other chief body stones because the 1F main body stone is relatively more slender than the other parts. In addition, the decorative top was identified as the component most vulnerable to sliding. This study found that the 1F main body stone is vulnerable to rocking, and the parts located on the upper part are more vulnerable to sliding.

Dynamic Behavior Analysis of Driving Part in CHIP MOUNTER (CHIP MOUNTER 구동부의 동적 거동 해석)

  • 박원기;박진무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.471-474
    • /
    • 2001
  • Recently, due to demands of faster speed and extra features for the chip mounters, there has been ever-demanding needs for the basic technology. Until four or five years ago, chip mounters placing 0.3sec/chip were considered to be in the high speed category, but since then it has become a borderline for categorizing high speed machines capable of placing 0.1sec/chip. In this study, in order to analyze the vibration of head generated by the dynamic behavior of x-frame, FEM model is composed and modal analysis is performed to identify the dynamic characteristics of the structure. Those results are compared with the modal test in order to verify the model. In this paper, Several other factors, such as definition of dynamic accuracy, static accuracy and tolerance of the axis settling range, that might affect the dynamic behavior the head are discussed.

  • PDF

Comparison and Dynamic Behavior of Moving-Coil Linear Oscillatory Actuator with/without Mechanical Spring driven by Rectangular Voltage Source

  • Choi, Jang-Young;Kang, Han-Bit
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.394-397
    • /
    • 2014
  • This paper deals with the comparison and dynamic behavior of a moving-coil linear oscillatory actuator (MCLOA) with/without a mechanical spring. On the basis of a dynamic simulation model, the dynamic characteristics such as a current and a stroke of the MCLOA without the spring are predicted for various values of frequency. And then, dynamic test results are given to confirm the dynamic simulations. Finally, this paper describes the influence of the spring on the dynamic behavior of the MCLOA from the dynamic experiments of the MCLOA with/without the spring.

A Study on System's Reliability Evaluation Using DFT Algorithm (동적 결함 트리 (Dynamic Fault Tree) 알고리즘을 이용한 시스템의 신뢰도 평가에 관한 연구)

  • 김진수;양성현;이기서
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.280-287
    • /
    • 1998
  • In this paper, Dynamic Fault Tree algorithm(DFT algorithm) is presented. This new algorithm provides a concise representation of dynamic fault tolerance system structure with redundancy, dynamic redundancy management and complex fault & error recovery techniques. And it allows the modeler to define a dynamic fault tree model with the relative advantages of both fault tree and Markov models that captures the system structure and dynamic behavior. This algorithm applies to TMR and Dual-Duplex systems with the dynamic behavior and show that this algorithm captured the dynamic behavior in these systems with fault & error recovery technique, sequence-dependent failures and the use dynamic spare. The DFT algorithm for solving the problems of the systems is more effective than the Markov and Fault tree analysis model.

  • PDF

Emotional Behavior Decision Model Based on Linear Dynamic System for Intelligent Service Robots (지능형 서비스 로봇을 위한 선형 동적 시스템 기반의 감정 기반 행동 결정 모델)

  • Ahn, Ho-Seok;Choi, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.760-768
    • /
    • 2007
  • This paper introduces an emotional behavior decision model based on linear system for intelligent service robots. An emotional model should make different behavior decisions according to the purpose of the robots. We propose an emotional behavior decision model which can change the character of intelligent service robots and make different behavior decisions although the situation and environment remain the same. We defined each emotional element such as reactive dynamics, internal dynamics, emotional dynamics, and behavior dynamics by state dynamic equations. The proposed system model is a linear dynamic system. If you want to add one external stimulus or behavior, you need to add just one dimensional vector to the matrix of external stimulus or behavior dynamics. The case of removing is same. The change of reactive dynamics, internal dynamics, emotional dynamics, and behavior dynamics also follows the same procedure. We implemented a cyber robot and an emotional head robot using 3D character for verifying the performance of the proposed emotional behavior decision model.

Dynamic behavior of clayey sand over a wide range using dynamic triaxial and resonant column tests

  • Guler, Ersin;Afacan, Kamil B.
    • Geomechanics and Engineering
    • /
    • v.24 no.2
    • /
    • pp.105-113
    • /
    • 2021
  • Deformations in soils induced by dynamic loads cause damage to the structures above the soil layers. It is important for geotechnical engineering practice that how the soil behaves due to repeated loads and the necessary precautions to be taken accordingly. Turkey is one of the most important seismic regions in Europe and earthquake studies to be conducted in this area are intended to reduce the damage as a result of taking the necessary measures. To determine the properties of soils under dynamic loads, stress-controlled dynamic triaxial and resonant column tests can be performed. In this study, these experiments were implemented in the laboratory on the clayey sand soil samples obtained from Bilecik Söğüt. To evaluate the effects of the confining pressure and rate of loading on the dynamic behavior of soils, samples were dynamically loaded by different rates at varying confining pressures. As a result, the changes in stress-strain properties of soils under dynamic loads were investigated. The alteration in behavior in terms of modulus reduction and damping ratios was obtained to vary a lot with the change of the lateral pressure on soil along with the frequency of the load.