• Title/Summary/Keyword: Dynamic amplifier

Search Result 192, Processing Time 0.025 seconds

Ultra Low Field Sensor Using GMI Effect in NiFe/Cu Wires

  • Kollu, Pratap;Kim, Doung-Young;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • v.12 no.1
    • /
    • pp.35-39
    • /
    • 2007
  • A highly sensitive magnetic sensor using the Giant MagnetoImpedance effect has been developed. The sensor performance is studied and estimated. The sensor circuitry consists of a square wave generator (driving source), a sensing element in a form of composite wire of a 25 $\mu$m copper core electrodeposited with a thin layer of soft magnetic material ($Ni_{80}Fe_{20}$), and two amplifier stages for improving the gain, switching mechanism, scaler circuit, an AC power source driving the permeability of the magnetic coating layer of the sensing element into a dynamic state, and a signal pickup LC circuit formed by a pickup coil and an capacitor. Experimental studies on sensor have been carried out to investigate the key parameters in relation to the sensor sensitivity and resolution. The results showed that for high sensitivity and resolution, the frequency and magnitude of the ac driving current through the sensing element each has an optimum value, the resonance frequency of the signal pickup LC circuit should be equal to or twice as the driving frequency on the sensing element, and the anisotropy of the magnetic coating layer of the sensing wire element should be longitudinal.

Optical Communication and Sensing Modules for Plastic Optical Fibers (고분자광섬유용 광통신 및 센서 모듈)

  • Park, Byung-Wook;Yoon, Do-Young;Kim, Dong-Shik
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.558-564
    • /
    • 2009
  • POF(Polymer optical fiber) offers advantages of lighter, inexpensive, and easier to use over GOF(glass optical fiber). Its higher transmission loss and low bandwidth, however, make it suitable only for short distance networking such as LAN. The polymer materials and its synthesis technology of low transmission loss and the broader application for flexible POF are the two of many critical areas to be investigated more. In the current study, low-noise POF modules are developed and optimized with a low noise amplifier and low cost LED of 650 nm. In order to demonstrate the dynamic characteristics of the POF module for optical communication and sensing, we have built an image transfer module, optical transmission speed measurement module, optical transceiver for RS-232, and sound-transfer module, and the signal characteristics of them are evaluated. It is found that the module can be readily used for a quick and simple measurement of optical transfer speed. With help of analog amplifier, LED, and PD, sound and image transfers through a maximum 60 m optical waveguide have been confirmed. Real-time data transfer was also demonstrated in PID control, which is thought to be valuable to industrial plant design and control.

A 10b 100MS/s 27.2mW $0.8mm^2$ 0.18um CMOS Pipeline ADC with Various Circuit Sharing Schemes (다양한 회로 공유기법을 사용하는 10비트 100MS/s 27.2mW $0.8mm^2$ 0.18um CMOS Pipeline ADC)

  • Yoon, Kun-Yong;Lee, Se-Won;Choi, Min-Ho;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.4
    • /
    • pp.53-63
    • /
    • 2009
  • This work proposes a 10b 100MS/s 27.2mW $0.8mm^2$ 0.18um CMOS ADC for WLAN such as an IEEE 802.11n standard. The proposed ADC employs a three-stage pipeline architecture and minimizes power consumption and chip area by sharing as many circuits as possible. Two multiplying DACs share a single amplifier without MOS switches connected in series while the shared amplifier does not show a conventional memory effect. All three flash ADCs use only one resistor ladder while the second and third flash ADCs share all pre-amps to further reduce power consumption and chip area. The interpolation circuit employed in the flash ADCs halves the required number of pre-amps and an input-output isolated dynamic latch reduces the increased kickback noise caused by the pre-amp sharing. The prototype ADC implemented in a 0.18um n-well 1P6M CMOS process shows the DNL and INL within 0.83LSB and 1.52LSB at 10b, respectively. The ADC measures an SNDR of 52.1dB and an SFDR of 67.6dB at a sampling rate of 100MS/s. The ADC with an active die area of $0.8mm^2$ consumes 27.2mW at 1.8V and 100MS/s.

Monitoring Machining Conditions by Analyzing Cutting-Force Vibration (절삭력 진동 분석에 의한 가공조건 모니터링)

  • Piao, Chunguang;Kim, Ju Wan;Kim, Jin Oh;Shin, Yoan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.839-849
    • /
    • 2015
  • This paper deals with an experimental technique for monitoring machining conditions by analyzing cutting-force vibration measured at a milling machine. This technique is based on the relationship of the cutting-force vibrations with the feed rate and cutting depth as reported earlier. The measurement system consists of dynamic force transducers and a signal amplifier. The analysis system includes an oscilloscope and a computer with a LabVIEW program. Experiments were carried out at various feed rates and cutting depths, while the rotating speed was kept constant. The magnitude of the cutting force vibration component corresponding to the number of cutting edges multiplied by the frequency of rotation was linearly correlated with the machining conditions. When one condition of machining is known, another condition can be identified by analyzing the cutting-force vibration.

A Design and Implementation of Digital Ultra-Narrowband Walky-Talky Using Direct Conversion Method (직접 변환 방식을 이용한 디지털 초협대역 무전기 설계 및 구현)

  • Chong Young-Jun;Kang Min-Soo;Yoo Sung-Jin;Chung Tae-Jin;Oh Seung-Hyeub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.6 s.97
    • /
    • pp.603-614
    • /
    • 2005
  • In this paper, digital ultra-narrowband Walky-Talky using direct conversion method for CQPSK modulation scheme is implemented with satisfying the requirements of APCO P25. RF transceiver design and implementation scheme that minimize the influence of DC-offset and AC-coupling at ultra-narrowband is proposed. This scheme also minimizes the influence of nonlinear characteristic at power amplifier fir CQPSK modulation method. Test results of full system including DSP module and direct conversion RF transceiver show that FCC emission mask at 36.8 dBm PEP meets the standard requirements. The characteristic of receiver AGC by PWM control signal is linear at 40 dB dynamic range and voice communication at input power level of -116 dBm is successful. Also it is verified that the performance of BER versus frequency offset and versus SNR meets the standard requirements.

LONGITUDINAL WAVES, STORING AND AMPLIFYING CAPABILITY OF INFORMATION IN WATER MOLECULES AND QUANTUM RESONANCE SPECTROMETER

  • Oh, Hung-Kuk
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.10b
    • /
    • pp.18-28
    • /
    • 1996
  • The outer-most electrons of metal atoms and the remaining valence electrons of any molecular atoms make three-dimensional crystallizing $\pi$-bondings. The rotating electrons on the three-dimensional crystallizing $\pi$-bonding orbitals of atoms make $\pi$-far infrared rays. Longitudinal wave is a propagation of a bundle of $\pi$-far infrared rays, which are produced by a dynamic impact on a solid bar. The $\pi$-far infrared rays make three-dimensional crystallizing $\pi$-bondings in the material, which reproduce the same $\pi$-far infrared rays. If a current signal is input into water molecules under a given electric potential field with $\pi$-far infrared rays (input information), the signal can be amplified because the $\pi$-far infrared rays make the $\pi$-bondings, which reduce electric resistance. The three-dimensional crystallizing $\pi$-bondings can induce normal electrons to move from one orbital to next one with a aid of potential electric field. Quantum Resonance Spectrometer is composed of tesla coil absorbing $\pi$-far infrared rays, tesla coil emitting varying electromagnetic waves signal generator, signal storage, human body amplifier, signal analyzer and data indicator. The absorbing tesla coil making varying magnetic field and downward and upward electric field, which resonates the $\pi$-far infrared rays coming out from specimen and absorbs them. The modulated current signal from the input square signal can generate and emit varying electromagnetic waves from the tesla coil. The varying electro-magnetic waves make the three-dimensional crystallizing $\pi$-bondings and the $\pi$-far infrared rays in the water molecules.

  • PDF

Low Power 31.6 pJ/step Successive Approximation Direct Capacitance-to-Digital Converter (저전력 31.6 pJ/step 축차 근사형 용량-디지털 직접 변환 IC)

  • Ko, Youngwoon;Kim, Hyungsup;Moon, Youngjin;Lee, Byuncheol;Ko, Hyoungho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.93-98
    • /
    • 2018
  • In this paper, an energy-efficient 11.49-bit successive approximation register (SAR) capacitance-to-digital converter (CDC) for capacitive sensors with a figure of merit (FoM) of 31.6 pJ/conversion-step is presented. The CDC employs a SAR algorithm to obtain low power consumption and a simplified structure. The proposed circuit uses a capacitive sensing amplifier (CSA) and a dynamic latch comparator to achieve parasitic capacitance-insensitive operation. The CSA adopts a correlated double sampling (CDS) technique to reduce flicker (1/f) noise to achieve low-noise characteristics. The SAR algorithm is implemented in dual operating mode, using an 8-bit coarse programmable capacitor array in the capacitance-domain and an 8-bit R-2R digital-to-analog converter (DAC) in the charge-domain. The proposed CDC achieves a wide input capacitance range of 29.4 pF and a high resolution of 0.449 fF. The CDC is fabricated in a $0.18-{\mu}m$ 1P6M complementary metal-oxide-semiconductor (CMOS) process with an active area of 0.55 mm2. The total power consumption of the CDC is $86.4{\mu}W$ with a 1.8-V supply. The SAR CDC achieves a measured 11.49-bit resolution within a conversion time of 1.025 ms and an energy-efficiency FoM of 31.6 pJ/step.

A 1.8 V 40-MS/sec 10-bit 0.18-㎛ CMOS Pipelined ADC using a Bootstrapped Switch with Constant Resistance

  • Eo, Ji-Hun;Kim, Sang-Hun;Kim, Mun-Gyu;Jang, Young-Chan
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.85-90
    • /
    • 2012
  • A 40-MS/sec 10-bit pipelined analog to digital converter (ADC) with a 1.2 Vpp differential input signal is proposed. The implemented pipelined ADC consists of eight stages of 1.5 bit/stage, one stage of 2 bit/stage, a digital error correction block, band-gap reference circuit & reference driver, and clock generator. The 1.5 bit/stage consists of a sub-ADC, digital to analog (DAC), and gain stage, and the 2.0 bit/stage consists of only a 2-bit sub-ADC. A bootstrapped switch with a constant resistance is proposed to improve the linearity of the input switch. It reduces the maximum VGS variation of the conventional bootstrapped switch by 67%. The proposed bootstrapped switch is used in the first 1.5 bit/stage instead of a sample-hold amplifier (SHA). This results in the reduction of the hardware and power consumption. It also increases the input bandwidth and dynamic performance. A reference voltage for the ADC is driven by using an on-chip reference driver without an external reference. A digital error correction with a redundancy is also used to compensate for analog noise such as an input offset voltage of a comparator and a gain error of a gain stage. The proposed pipelined ADC is implemented by using a 0.18-${\mu}m$ 1- poly 5-metal CMOS process with a 1.8 V supply. The total area including a power decoupling capacitor and the power consumption are 0.95 $mm^2$ and 51.5 mW, respectively. The signal-to-noise and distortion ratio (SNDR) is 56.15 dB at the Nyquist frequency, resulting in an effective number of bits (ENOB) of 9.03 bits.

A Study on the Design of Content Addressable and Reentrant Memory(CARM) (Content Addressable and Reentrant Memory (CARM)의 설계에 관한 연구)

  • 이준수;백인천;박상봉;박노경;차균현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.1
    • /
    • pp.46-56
    • /
    • 1991
  • In this paper, 16word X 8bit Content Addressable and Reentrant Memory(CARM) is described. This device has 4 operation modes(read, write, match, reentrant). The read and write operation of CARM is like that of static RAM, CARM has the reentrant mode operation where the on chip garbage collection is accomplished conditionally. Thus function can be used for high speed matching unit of dynamic data flow computer. And CARM also can encode matching address sequentially according to therir priority. CARM consists of 8 blocks(CAM cell, Sequential Address Encoder(S.A.E). Reentrant operation. Read/Write control circuit, Data/Mask Register, Sense Amplifier, Encoder. Decoder). Designed DARM can be used in data flow computer, pattern, inspection, table look-up, image processing. The simulation is performed using the QUICKSIM logic simulator and Pspice circuit simulator. Having hierarchical structure, the layout was done using the 3{\;}\mu\textrm{m} n well CMOS technology of the ETRI design rule.

  • PDF

Design and Fabrication of a GaAs MESFET MMIC Transmitter for 2.4 GHz Wireless Local Loop Handset (2.4 GHz WLL 단말기용 GaAs MESFET MMIC 송신기 설계 및 제작)

  • 성진봉;홍성용;김민건;김해천;임종원;이재진
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.1
    • /
    • pp.84-92
    • /
    • 2000
  • A GaAs MESFET MMIC transmitter for 2.4 GHz wireless local loop handset is designed and fabricated. The transmitter consists of a double balanced active mixer and a two stage driver amplifier with voltage negative feedback. In particular, a pair of CS-CG(common source-common gate) structure compensates the reduction in dynamic range caused by unbalanced complementary IF input signals. And to suppress the leakage local power at RF port, the mixer is designed by using phase characteristic between the ports of MESFET. At the bias condition of 2.7 V and 55.2 mA, the fabricated MMIC transmitter with chip dimensions of $0.75\times1.75 mm^2$ obtains a measured conversion gain of 38.6 dB, output $P_{idB}$ of 11.6 dBm, and IMD3 at -5 dBm RF output power of -31.3 dBc. This transmitter is well suited for WLL handset.

  • PDF