• Title/Summary/Keyword: Dynamic aggregation

Search Result 93, Processing Time 0.033 seconds

Preparation of a Hydrophobized Chitosan Oligosaccharide for Application as an Efficient Gene Carrier

  • Son Sohee;Chae Su Young;Choi Changyong;Kim Myung-Yul;Ngugen Vu Giang;Jang Mi-Kyeong;Nah Jae-Woon;Kweon Jung Keoo
    • Macromolecular Research
    • /
    • v.12 no.6
    • /
    • pp.573-580
    • /
    • 2004
  • To prepare chitosan-based polymeric amphiphiles that can form nanosized core-shell structures (nanopar­ticles) in aqueous milieu, chitosan oligosaccharides (COSs) were modified chemically with hydrophobic cholesterol groups. The physicochemical properties of the hydrophobized COSs (COSCs) were investigated by using dynamic light scattering and fluorescence spectroscopy. The feasibility of applying the COSCs to biomedical applications was investigated by introducing them into a gene delivery system. The COSCs formed nanosized self-aggregates in aqueous environments. Furthermore, the physicochemical properties of the COSC nanoparticles were closely related to the molecular weights of the COSs and the number of hydrophobic groups per COS chain. The critical aggregation concentration values decreased upon increasing the hydrophobicity of the COSCs. The COSCs effi­ciently condensed plasmid DNA into nanosized ion-complexes, in contrast to the effect of the unmodified COSs. An investigation of gene condensation, performed using a gel retardation assay, revealed that $COS6(M_n=6,040 Da)$ containing $5\%$ of cholesteryl chloroformate (COS6C5) formed a stable DNA complex at a COS6C5/DNA weight ratio of 2. In contrast, COS6, the unmodified COS, failed to form a stable COS/DNA complex even at an elevated weight ratio of 8. Furthermore, the COS6C5/DNA complex enhanced the in vitro transfection efficiency on Human embryonic kidney 293 cells by over 100 and 3 times those of COS6 and poly(L-lysine), respectively. Therefore, hydrophobized chitosan oligosaccharide can be considered as an efficient gene carrier for gene delivery systems.

Self-organized Pullulan/Deoxycholic Acid Nanogels: Physicochemical Characterization and Anti-cancer Drug-releasing Behavior

  • Na, Kun;Park, Kyong-Mi;Jo, Eun-Ae;Lee, Kwan-Shik
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.262-267
    • /
    • 2006
  • The objective of this study was to develop new self-organized nanogels as a means of drug delivery in patients with cancer. Pullulan (PUL) and deoxycholic acid (DOCA) were conjugated through an ester linkage between the hydroxyl group in PUL and the carboxyl group in DOCA. Three types of PUL/DOCA conjugates were obtained, differing in the number of DOCA substitutions (DS; 5, 8, or 11) per 100 PUL anhydroglucose units. The physicochemical properties of the resulting nanogels were characterized by dynamic light scattering, transmission electron microscopy, and fluorescence spectroscopy. The mean diameter of DS 11 was the smallest (approx. 100 nm), and the size distribution was unimodal. To determine the organizing behavior of these conjugates, we calculated their critical aggregation concentrations (CACs) in a 0.01-M phosphate buffered saline solution. They were $10.5{\times}10^{-4}mg/mL,\;7.2{\times}10^{-4} mg/mL,\;and\;5.6{\times}10^{-4} mg/mL$ for DS 5, 8, and 11, respectively. This indicates that DOCA can serve as a hydrophobic moiety to create self-organized nanogels. To monitor the drug-releasing behavior of these nanogels, we loaded doxorubicin (DOX) onto the conjugates. The DOX-loading efficiency increased with the degree of DOCA substitution. The release rates of DOX from PUL/DOCA nanogels varied inversely with the DS. We concluded that the PUL/DOCA nanogel has some potential for use as an anticancer drug carrier because of its low CAC and satisfactory drug-loading capacity.

A Study of Energy Efficient Clustering in Wireless Sensor Networks (무선 센서네트워크의 에너지 효율적 집단화에 관한 연구)

  • Lee Sang Hak;Chung Tae Choong
    • The KIPS Transactions:PartC
    • /
    • v.11C no.7 s.96
    • /
    • pp.923-930
    • /
    • 2004
  • Wireless sensor networks is a core technology of ubiquitous computing which enables the network to aware the different kind of context by integrating exiting wired/wireless infranet with various sensor devices and connecting collected environmental data with applications. However it needs an energy-efficient approach in network layer to maintain the dynamic ad hoc network and to maximize the network lifetime by using energy constrained node. Cluster-based data aggregation and routing are energy-efficient solution judging from architecture of sensor networks and characteristics of data. In this paper. we propose a new distributed clustering algorithm in using distance from the sink. This algorithm shows that it can balance energy dissipation among nodes while minimizing the overhead. We verify that our clustering is more en-ergy-efficient and thus prolongs the network lifetime in comparing our proposed clustering to existing probabilistic clustering for sensor network via simulation.

Effects of Temperature and Additives on the Thermal Stability of Glucoamylase from Aspergillus niger

  • Liu, Yang;Meng, Zhaoli;Shi, Ruilin;Zhan, Le;Hu, Wei;Xiang, Hongyu;Xie, Qiuhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.33-43
    • /
    • 2015
  • GAM-1 and GAM-2, two themostable glucoamylases from Aspergillus niger B-30, possess different molecular masses, glycosylation, and thermal stability. In the present study, the effects of additives on the thermal inactivation of GAM-1 and GAM-2 were investigated. The half-lives of GAM-1 and GAM-2 at 70℃ were 45 and 216 min, respectively. Data obtained from fluorescence spectroscopy, circular dichroism spectroscopy, UV absorption spectroscopy, and dynamic light scattering demonstrated that during the thermal inactivation progress, combined with the loss of the helical structure and a majority of the tertiary structure, tryptophan residues were partially exposed and further led to glucoamylases aggregating. The thermal stability of GAM-1 and GAM-2 was largely improved in the presence of sorbitol and trehalose. Results from spectroscopy and Native-PAGE confirmed that sorbitol and trehalose maintained the native state of glucoamylases and prevented their thermal aggregation. The loss of hydrophobic bonding and helical structure was responsible for the decrease of glucoamylase activity. Additionally, sorbitol and trehalose significantly increased the substrate affinity and catalytic efficiency of the two glucoamylases. Our results display an insight into the thermal inactivation of glucoamylases and provide an important base for industrial applications of the thermally stable glucoamylases.

Preparation and Properties of Soybean Lecithin Liposome using Supercritical Reverse Phase Evaporation Method (초임계 역상 증발법을 이용한 대두 레시틴 리포좀의 제조 및 특성)

  • Lee, Mi-Jin;Jeong, Noh-Hee;Jeang, Boo-Sick
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.391-398
    • /
    • 2010
  • Soybean lecithin liposomes composed phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl inositol and phosphatidic acid were prepared by using the previously developed supercritical reverse phase evaporation method. The effect of phospholipid composition on the formation of liposomes and physicochemical properties were examined by means of trapping efficiency measurements, transmission electron microscopy, dynamic light scattering and zeta potential measurements. The trapping efficiency of liposomes for D-(+)-glucose made of CNA-Ⅰ which contains approximately 95% phosphatidyl choline is higher than that of CNA-II and CNA-O which contain approximately 32% phosphatidyl choline. However there is no any difference between the trapping efficiency of liposomes for D-(+)-glucose made of CNA-II which has saturated hydrocarbons tails and that of liposomes made of CNA-O which has unsaturated hydrocarbon chains. The electron micrographs of liposomes made of CNA-II and CNA-O show small spherical liposomes with diameter of $0.1\sim0.25{\mu}m$, while that of CNA-I shows large unilamellar liposomes with diameter of $0.2\sim1.2{\mu}m$. These results clearly show that phospholipid structure of phosphatidylcholine allows an efficient preparation of large unilamellar liposomes and a high trapping efficiency for water soluble substances. Liposomes made of CNA-II and CNA-O remained well-dispersed for at least 14 days, while liposome suspension made of CNA-I separated in two phase at 14 days due to aggregation and fusion of liposomes. The dispersibility of liposomes made of CNA-I is lower than that of CNA-II and CNA-O due to the smallar zeta potential of CNA-I.

Comparative Analysis of Methods to Support Dynamic Adaptive Streaming over HTTP (HTTP 기반 동적 적응형 스트리밍 연구의 비교·분석)

  • Jin, Feng;Kim, Mijung;Yoon, Ilchul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.527-530
    • /
    • 2014
  • DASH is a well-known streaming technology, which was proposed in 2010 by MPEG and standardized in 2011. Major multimedia contents service providers, including Apple, Microsoft, and Adobe are all using this technology to support their media streaming services. Whenever a new service is requested to the server, the DASH technology helps servicing the multimedia streaming to client by recognizing the capacity of network and by adapting the quality of the multimedia contents. In DASH, the quality of multimedia contents will be automatically lowered to meet the fluctuating network status, when undesirable breaks interrupt the network. In this paper, we classified and analysed the advantages and disadvantages of DASH researches in three aspects: bit-rate measurement method, bandwidth aggregation method; rate adaptation metrics, algorithms and logics; user's experiences and QoE.

  • PDF

Fixing Security Flaws of URSA Ad hoc Signature Scheme (URSA 애드혹 서명 알고리즘의 오류 수정)

  • Yi, Jeong-Hyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.4
    • /
    • pp.131-136
    • /
    • 2007
  • Ad hoc networks enable efficient resource aggregation in decentralized manner, and are inherently scalable and fault-tolerant since they do not depend on any centralized authority. However, lack of a centralized authority prompts many security-related challenges. Moreover, the dynamic topology change in which network nodes frequently join and leave adds a further complication in designing effective and efficient security mechanism. Security services for ad hoc networks need to be provided in a scalable and fault-tolerant manner while allowing for membership change of network nodes. In this paper, we investigate distributed certification mechanisms using a threshold cryptography in a way that the functions of a CA(Certification Authority) are distributed into the network nodes themselves and certain number of nodes jointly issue public key certificates to future joining nodes. In the process, we summarize one interesting report [5] in which the recently proposed RSA-based ad hoc signature scheme, called URSA, contains unfortunate yet serious security flaws. We then propose new scheme by fixing their security flaws.

Study on the Behavior of Colloidal Hematite: Effects of Ionic Composition and Strength and Natural Organic Matter in Aqueous Environments (교질상 적철석의 거동 특성: 수환경 내 이온 조성 및 세기, 자연 유기물이 미치는 영향)

  • Lee, Woo-Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.347-362
    • /
    • 2020
  • Iron (hydro)oxides in aqueous environments are primarily formed due to mining activities, and they are known to be typical colloidal particles disturbing surrounding environments. Among them, hematites are widespread in surface environments, and their behavior is controlled by diverse factors in aqueous environments. This study was conducted to elucidate the effect of environmental factors, such as ionic composition and strength, pH, and natural organic matter (NOM) on the behavior of colloidal hematite particles. In particular, two analytical methods, such as dynamic light scattering (DLS) and single-particle ICP-MS (spICP-MS), were compared to quantify and characterize the behavior of colloidal hematites. According to the variation of ionic composition and strength, the aggregation/dispersion characteristics of the hematite particles were affected as a result of the change in the thickness of the diffuse double layer as well as the total force of electrostatic repulsion and van der Walls attraction. Besides, the more dispersed the particles were, the farther away the aqueous pH was from their point of zero charge (PZC). The results indicate that the electrostatic and steric (structural) stabilization of the particles was enhanced by the functional groups of the natural organic matter, such as carboxyl and phenolic, as the NOM coated the surface of colloidal hematite particles in aqueous environments. Furthermore, such coating effects seemed to increase with decreasing molar mass of NOM. On the contrary, these stabilization (dispersion) effects of NOM were much more diminished by divalent cations such as Ca2+ than monovalent ones (Na+), and it could be attributed to the fact that the former acted as bridges much more strongly between the NOM-coated hematite particles than the latter because of the relatively larger ionic potential of the former. Consequently, it was quantitatively confirmed that the behavior of colloidal hematites in aqueous environments was significantly affected by diverse factors, such as ionic composition and strength, pH, and NOM. Among them, the NOM seemed to be the primary and dominant one controlling the behavior of hematite colloids. Meanwhile, the results of the comparative study on DLS and spICPMS suggest that the analyses combining both methods are likely to improve the effectiveness on the quantitative characterization of colloidal behavior in aqueous environments because they showed different strengths: the main advantage of the DLS method is the speed and ease of the operation, while the outstanding merit of the spICP-MS are to consider the shape of particles and the type of aggregation.

Sorption of Arsenite Using Nanosized Mackinawite (FeS)-Coated Silica Sand (나노 크기 매킨나와이트로 코팅된 규사를 이용한 아비산염의 흡착)

  • Lee, Seungyeol;Kang, Jung Chun;Park, Minji;Yang, Kyounghee;Jeong, Hoon Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.185-195
    • /
    • 2012
  • Due to the high reduction and sorption capacity as well as the large specific surface area, nanosized mackinawite (FeS) is useful in reductively transforming chlorinated organic pollutants and sequestering toxic metals and metalloids. Due to the dynamic nature in its colloid stability, however, nanosized FeS may be washed out with the groundwater flow or result in aquifer clogging via particle aggregation. Thus, these nanoparticles should be modified such as to be built into permeable reactive barriers. This study employed coating methods in efforts to facilitate the installation of permeable reactive barriers of nanosized mackinawite. In applying the methods, nanosized mackinawite was coated on non-treated silica sand (NTS) and chemically treated silica sand (CTS). For both silica sands, the maximum coating of mackinawite occurred around pH 5.4, the condition of which was governed by (1) the solubility of mackinawite and (2) the surface charge of both silica and mackinawite. Under this pH condition, the maximum coating by NTS and CTS were found to be 0.101 mmol FeS/g and 0.043 mmol FeS/g respectively, with such elevated coatings by NTS likely linked with impurities (e.g., iron oxides) on its surface. Arsenite sorption experiments were performed under anoxic conditions using uncoated silica sands and those coated with mackinawite at the optimal pH to compare their reactivity. At pH 7, the relative sorption efficiency between uncoated NTS and coated NTS changed with the initial concentration of arsenite. At the lower initial concentration, uncoated NTS showed the higher sorption efficiency, whereas at the higher concentration, coated NTS exhibited the higher sorption efficiency. This could be attributed to different sorption mechanisms as a function of arsenite concentration: the surface complexation of arsenite with the iron oxide impurity on silica sand at the low concentration and the precipitation as arsenic sulfides by reaction with mackinawite coating at the high concentration. Compared to coated NTS, coated CTS showed the lower arsenite removal at pH 7 due to its relatively lower mackinawite coating. Taken together, our results indicate that NTS is a more effective material than CTS for the coating of nanosized mackinawite.

Pharmaceutical Characteristics of Korean Lumbricus rubellus Lumbrokinase (한국산 지렁이[Lumbricus rubellus]에서 분리한 Lumbrokinase의 약리학적 특성)

  • 조일환;이철규;임헌길;이형환
    • KSBB Journal
    • /
    • v.19 no.4
    • /
    • pp.274-283
    • /
    • 2004
  • Six lumbrokinase (LK) fractions from Lumbricus rubellus lysates were purified by a series of column chromatographies. The molecular weights of the six LK fractions appeared to range from 24.6 to 33.1 kDa. In the experimental model of rat venous thrombosis, the thrombus weight and PAI activity decreased significantly when the LK was administered orally. However, the activities of APTT, PT and plasmin showed a significant increase. The aggregation of rat platelets pretreated with various LK doses was inhibited by thrombin, and the MDA generation decreased. The rat thoracic aorta and mesentric arteries contracted with phenylephrine relaxed due to the treatment of the LK fractions. These results suggest that the fibrinolytic effects of LK were mediated not only by proteolytic activity, but also by the inhibition of platelet agregation and the relaxation of blood vessels. It is concluded that the LK may be useful as a hemolytic agent for treatment of fibrin clot.