• Title/Summary/Keyword: Dynamic aggregation

Search Result 93, Processing Time 0.03 seconds

A study on equivalent control device model for power system reduction (전력 계통 축약을 위한 등가 제어기 모델에 관한 연구)

  • Lee, H.M.;Rho, K.M.;Jang, B.H.;Kwon, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.273-275
    • /
    • 1999
  • This paper presents a dynamic equivalencing method in large electric power system for stability analysis. This method of modeling simplified equivalents for parts of the network outside the study area is to evaluate the stability of a study area modeled in detail. Generators are closely coupled in an electrical sense tend to swing together in groups during disturbances, and this behavior can be exploited to reduce the size of the power system model. The characteristics of generators swing together are referred to as coherency Coherency groups whose generators state trajectory are similar to the other generators state trajectory in the same coherency group by a certain disturbance. In this paper, procedures for forming dynamic equivalents of control devices of coherency-based generating units are proposed and the aggregation of the control devices such as excitation system and governor-turbine system is accomplished by this method. This method can deal with the aggregation of the same type of control devices and combination of hydro and steam unit or the many types of excitation systems. etc. This method is shown to be efficient in reducing the number of control device of generating units with small error in the study group by result of case study presented latter part of this paper.

  • PDF

Dimensioning of linear and hierarchical wireless sensor networks for infrastructure monitoring with enhanced reliability

  • Ali, Salman;Qaisar, Saad Bin;Felemban, Emad A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3034-3055
    • /
    • 2014
  • Wireless Sensor Networks have extensively been utilized for ambient data collection from simple linear structures to dense tiered deployments. Issues related to optimal resource allocation still persist for simplistic deployments including linear and hierarchical networks. In this work, we investigate the case of dimensioning parameters for linear and tiered wireless sensor network deployments with notion of providing extended lifetime and reliable data delivery over extensive infrastructures. We provide a single consolidated reference for selection of intrinsic sensor network parameters like number of required nodes for deployment over specified area, network operational lifetime, data aggregation requirements, energy dissipation concerns and communication channel related signal reliability. The dimensioning parameters have been analyzed in a pipeline monitoring scenario using ZigBee communication platform and subsequently referred with analytical models to ensure the dimensioning process is reflected in real world deployment with minimum resource consumption and best network connectivity. Concerns over data aggregation and routing delay minimization have been discussed with possible solutions. Finally, we propose a node placement strategy based on a dynamic programming model for achieving reliable received signals and consistent application in structural health monitoring with multi hop and long distance connectivity.

Recent advances in NMR-based structural characterization of αB-crystallin and its potential role in human diseases

  • Muniyappan, Srinivasan;Kim, Jin Hae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.1
    • /
    • pp.26-32
    • /
    • 2019
  • ${\alpha}B$-crystallin (${\alpha}BC$) is a member of a small heat-shock protein (sHSP) superfamily and plays a predominant role in cellular protein homeostasis network by rescuing misfolded proteins from irreversible aggregation. ${\alpha}BC$ assembles into dynamic and polydisperse high molecular weight complexes containing 12 to 48 monomers; this variable stereochemistry of ${\alpha}BC$ has been linked to quaternary subunit exchange and its chaperone activity. The chaperone activity of ${\alpha}BC$ poses great potential as therapeutic agents for various neurodegenerative diseases. In this mini-review, we briefly outline the recent advancement in structural characterization of ${\alpha}BCs$ and its potential role to inhibit protein misfolding and aggregation in various human diseases. In particular, nuclear magnetic resonance (NMR) spectroscopy and its complimentary techniques have contributed much to elucidate highly-dynamic nature of ${\alpha}BCs$, among which notable advancements are discussed in detail. We highlight the importance of resolving the structural details of various ${\alpha}BC$ oligomers, their quaternary dynamics, and structural heterogeneity.

Characterization and Release Behavior of Polymersomes of PEG-Poly(fumaric-sebacic acids)-PEG Triblock Copolymer in Aqueous Solution (PEG-Poly(fumaric-sebacic acids)-PEG 삼중 블록 공중합체로 수용액에서 만들어진 폴리머솜의 분석과 방출특성)

  • Pourhosseini, Pouneh S.;Saboury, Ali A.;Najafi, Farhood;Divsalar, Adeleh;Sarbolouki, Mohammad N.
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.294-301
    • /
    • 2013
  • Polymersomes made of biodegradable triblock copolymers based on poly(fumaric acid-co-sebacoyl chloride)/PEG (PEG-co-P(FA/SC)-co-PEG) were prepared and studied in aqueous solutions. TEM confirmed the formation of vesicles in aqueous media. Aggregation behavior of the copolymers was studied by fluorescence spectroscopy of 8-anilino-1-naphthalenesulfonic acid, and the critical aggregation concentration (c.a.c.) of the copolymer was found to be ${\sim}26.2{\mu}M$ indicating desirable stability of the vesicles. Dynamic light scattering revealed that the size of the vesicles was distributed within the range of 170-270 nm. Turbidity measurements confirmed the relative short-term stability of the polymersomes. Carboxyfluorescein, a hydrophilic compound, was simply encapsulated in the vesicles during polymersome preparation. The release of encapsulant from the polymersomes at 25 and $37^{\circ}C$ lasted about 3 weeks, and the rate of release followed a first-order kinetics. The release is speculated to be primarily carried out through diffusion. These results confirm that these polymersomes are promising as controlled-release carriers of various drugs.

Preparation and Characterization of Nanoparticles Using Poly(N-isopropylacrylamide)-$Poly({\varepsilon}-caprolactone)$ and Poly(ethylene glycol)-$Poly({\varepsilon}-caprolactone)$ Block Copolymers with Thermosensitive Function

  • Choi, Chang-Yong;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.623-632
    • /
    • 2007
  • Thermosensitive nanoparticles were prepared via the self-assembly of two different $poly({\varepsilon}-caprolactone)$-based block copolymers of poly(N-isopropylacrylamide)-b-$poly({\varepsilon}-caprolactone)$ (PNPCL) and poly(ethylene glycol)-b-$poly({\varepsilon}-caprolactone)$ (PEGCL). The self-aggregation and thermosensitive behaviors of the mixed nanoparticles were investigated using $^1H-NMR$, turbidimetry, differential scanning microcalorimetry (micro-DSC), dynamic light scattering (DLS), and fluorescence spectroscopy. The copolymer mixtures (mixed nanoparticles, M1-M5, with different PNPCL content) formed nano-sized self-aggregates in an aqueous environment via the intra- and/or intermolecular association of hydrophobic PCL chains. The microscopic investigation of the mixed nanoparticles showed that the critical aggregation concentration (cac), the partition equilibrium constants $(K_v)$ of pyrene, and the aggregation number of PCL chains per one hydrophobic microdomain varied in accordance with the compositions of the mixed nanoparticles. Furthermore, the PNPCL harboring mixed nanoparticles evidenced phase transition behavior, originated by coil to the globule transition of PNiPAAm block upon heating, thereby resulting in the turbidity change, endothermic heat exchange, and particle size reduction upon heating. The drug release tests showed that the formation of the thermosensitive hydrogel layer enhanced the sustained drug release patterns by functioning as an additional diffusion barrier.

A Dynamic Price Formation System and Its Welfare Analysis in Quantity Space: An Application to Korean Fish Markets

  • Park, Hoan-Jae
    • The Journal of Fisheries Business Administration
    • /
    • v.41 no.2
    • /
    • pp.107-133
    • /
    • 2010
  • As policy makers are often concerned about dynamic effects of demand behavior and its welfare analysis by quantity changes, the paper shows how dynamic price formation systems can be built up to analyze the effect of policy options to the markets dynamically. The paper develops dynamic model of price formation for fish from the intertemporal optimization of the consumer choice problem. While the resulting model has a similar form of the error correction types of dynamic price formation system, it provides the rational demand behavior contrary to the myopic behavior of error correction demand models. The paper also develops appropriate tools of dynamic welfare analysis in quantity space using only short-run demand estimates both theoretically and empirically as a first attempt in the literature of price formation and fisheries. The empirical results of Korean fish markets show that the dynamic model and the welfare measures are reasonably plausible. The methodology and theory of this research can be applied and extended to the commodity aggregation, dynamic demand estimation, and dynamic welfare effects of regulation in the similar framework. Thus, it is hoped that this will enhance its applications to the demand-side economics.

Aggregation Processes of a Weak Polyelectrolyte, Poly(allylamine) Hydrochloride

  • Park, Jae-Jung;Choi, Young-Wook;Kim, Kyung-Bae;Chung, Hoe-Il;Sohn, Dae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.104-110
    • /
    • 2008
  • Poly(allylamine) hydrochloride is a weak cationic polyelectrolyte that exhibits different aggregation properties at different solution pH values and aging times. Specifically, after several days aging in a pH 3 buffer, less than 1 mg/mL poly(allylamine) hydrochloride became turbid, and the hydrodynamic radius increased with a single diffusion mode. However, the hydrodynamic radius did not change at high concentrations. The dynamic processes of polymer aggregations at different pH values were verified by a light scattering and zeta-potential apparatus. The major interaction was caused by the capturing of counterions by the polyelectrolyte, which generates electrostatic, hydrophobic and cation-p interactions.

Numerical Simulation of Blood Cell Motion in a Simple Shear Flow

  • Choi, Choeng-Ryul;Kim, Chang-Nyung;Hong, Tae-Hyub
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1487-1491
    • /
    • 2008
  • Detailed knowledge on the motion of blood cells flowing in micro-channels under simple shear flow and the influence of blood flow is essential to provide a better understanding on the blood rheological properties and blood cell aggregation. The microscopic behavior of red blood cell (RBCs) is numerically investigated using a fluid-structure interaction (FSI) method based on the Arbitrary-Lagrangian-Eulerian (ALE) approach and the dynamic mesh method (smoothing and remeshing) in FLUENT (ANSYS Inc., USA). The employed FSI method could be applied to the motions and deformations of a single blood cell and multiple blood cells, and the primary thrombogenesis caused by platelet aggregation. It is expected that, combined with a sophisticated large-scale computational technique, the simulation method will be useful for understanding the overall properties of blood flow from blood cellular level (microscopic) to the resulting rheological properties of blood as a mass (macroscopic).

  • PDF

Optimal Aggregation of Induction Motors for Analysis of Load Dynamics (부하동특성 해석을 위한 유도전동기의 최적 축약법)

  • Lee, J.S.;Lee, B.Y.;Chung, T.H.;Lee, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.113-120
    • /
    • 1990
  • This paper presents a new aggregation method of induction motors for the load flow and transient stability analysis. The proposed method aggregates a group of motors into a single motor considering the variations of the system voltage and frequency so that the aggregated model represents the dynamic characteristics of the system accurately. The performance of the Method is shown by numerical simulation and is compared with that of LOADSYN algorithm.

  • PDF

High-pressure NMR application for α-synuclein

  • Kim, Jin Hae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.26 no.2
    • /
    • pp.21-23
    • /
    • 2022
  • High-pressure (HP) NMR is a powerful method to elucidate various structural features of amyloidogenic proteins. Following the previous mini-review recapitulating the HP-NMR application for amyloid-β peptides of the last issue [J. H. Kim, J. Kor. Mag. Reson. Soc. 26, 17 (2022)], the recent advancements in the HP NMR application for α-synuclein (α-Syn) are briefly summarized and discussed here. Although α-Syn is a well-known intrinsically disordered protein (IDP), several studies have shown that it can also exhibit heterogeneous yet partially folded conformations, which may correlate with its amyloid-forming propensity. HP NMR has been a valuable tool for investigating the dynamic and transient structural features of α-Syn and has provided unique insights to appreciate its aggregation-prone characters.