• 제목/요약/키워드: Dynamic Walking

검색결과 380건 처리시간 0.026초

이족보행로봇의 킥엑션을 이용한 보행 구현 (Gait Implementation using a Kick Action for IWR-III Biped Walking Robot)

  • 진광호;박천욱;최상호;김진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 B
    • /
    • pp.552-554
    • /
    • 1998
  • This paper deals with the gait generation of IWR-III using a kick action to have a walking pattern like human. For this, trajectory planning with the consideration of kick action is done in each walking step, and the coordinate transformation is done for simplifying the kinematics. Balancing motion is analyzed by FDM during the walking, By combining 4-types of pre-defined steps, multi-step walking is done. Using numerical simulator, dynamic analysis, ZMP analysis and system stability is confirmed. Walking motion is visualized by 3D- graphic simulator. As a result, trunk ahead motion effect and impactless smooth walking is implemented by experiment. Finally walking with kick action is implemented the IWR-III system.

  • PDF

동력학 모델을 이용한 인체 동작 제어 (Human Motion Control Using Dynamic Model)

  • 김창회;오병주;김승호
    • 대한인간공학회지
    • /
    • 제18권3호
    • /
    • pp.141-152
    • /
    • 1999
  • In this paper, We performed the human body dynamic modelling for the realistic animation based on the dynamical behavior of human body, and designed controller for the effective control of complicate human dynamic model. The human body was simplified as a rigid body which consists of 18 actuated degrees of freedom for the real time computation. Complex human kinematic mechanism was regarded as a composition of 6 serial kinematic chains : left arm, right arm, support leg, free leg, body, and head. Based on the this kinematic analysis, dynamic model of human body was determined using Newton-Euler formulation recursively. The balance controller was designed in order to control the nonlinear dynamics model of human body. The effectiveness of designed controller was examined by the graphical simulation of human walking motion. The simulation results were compared with the model base control results. And it was demonstrated that, the balance controller showed better performance in mimicking the dynamic motion of human walking.

  • PDF

8자 모양 트랙을 이용한 방향전환 훈련이 뇌졸중 환자의 균형 및 보행에 미치는 영향 (The Effect of Turning Training on Figure of 8 Tract on Stoke Patients' Balance and Walking)

  • 김미간;김중휘;박지원
    • The Journal of Korean Physical Therapy
    • /
    • 제24권2호
    • /
    • pp.143-150
    • /
    • 2012
  • Purpose: This study was intended to discover the effect of the turning training on figure of 8 tract on stroke patients' static and dynamic balance, as well as walking. Methods: A total of 42 stroke patients participated in this study. The training group was trained on the figure of 8 tract, while the control group was trained on the straight path for 30 minutes per day, for 4 weeks. Berg balance scale was used to measure the balance of the patients, before and after the training, and Good balance system was used to measure the sway speed and the distance of COG while standing. To measure the ability of walking, TUG and FSST were also used. Results: There were significant increases in the average score of Berg balance scale, in both groups after the training, and also significant difference between both groups were observed. The training group showed significant differences in the static balance ability, as well as anteroposterior and mediolateral sway speed. Further, there were significant increases in the dynamic balance ability, COP total distance, and TUG in both groups. The results showed more differences in comparing the control group with that of the training group. In FSST, there was no change in the control group, but there was a significant increase in the training group. Conclusion: Turning training on figure of 8 tract in stroke patients significantly increased the static and dynamic balance and walking ability. Based on the results, it can be seen that the training on the figure of 8 tract can influence the ability of balance and walking, which can lead to appropriate reactions to the change of environment and various tasks. Thus, it is assumed that turning training on figure of 8 tract as a means of improving the condition of stroke patients can be a meaningful program.

고령자용 개인교통수단 개발 사양 정의를 위한 보행환경 조사 (Walking Environment Survey for Development of Specification on Personal Mobility (PM) Device for Elderly)

  • 김영민;김지수;문병섭
    • 한국ITS학회 논문지
    • /
    • 제16권6호
    • /
    • pp.156-168
    • /
    • 2017
  • 개인교통수단(PM)은 개인의 이동편의를 향상시켜준다는 측면에서 보행능력이 떨어지는 고령자가 주요 활용 대상이 될 수 있다. 본 연구에서는 고령자가 보도 등 보행환경에서 안전하게 이용할 수 있는 개인교통수단을 설계하고자 한다. 보행환경에는 다양한 통행 장애요인이 존재하며, 개발하고자 하는 수단은 장애요인을 극복하기 위한 기기 성능이 확보되어야 한다. 본 연구에서는 고령자용 개인교통수단의 성능수준 결정을 위하여 보행환경 상 통행 장애요인 현황 및 수준을 조사한다. 관련 지침을 검토하여 조사 대상 항목 및 조사 방법론을 정의하고, 고령자 일상생활 기반 통행 시나리오를 통해 선정된 특정 도로구간에 대하여 조사를 수행한다. 조사 결과를 바탕으로 수단의 기기 성능을 지침 상 제시된 기준에 근거하여 확보하였을 때 발생 가능한 문제점을 확인하며, 장애인용 전동휠체어의 운전 성능 기준을 근거하여 개발 수단의 기기 성능에 대한 요구사항을 정의한다.

Comparison of the Effects of Barefoot, Kinesio Tape, and Dynamic Tape on Static and Dynamic Balance in Subjects With Asymptomatic Flexible

  • Lim, One-bin;Park, So-yeon
    • 한국전문물리치료학회지
    • /
    • 제27권1호
    • /
    • pp.78-86
    • /
    • 2020
  • Background: Flat-footed persons with collapsed medial longitudinal arch lose flexibility after skeletal maturity, resulting in several deformities and soft tissue injuries. Although arch support taping is usually applied in the clinic to support the collapsed arch, research on the use of different types of tape for more efficient arch support in flat-footed persons is lacking. Objects: The purpose of this study was to examine three conditions (barefoot, kinesio tape, and dynamic tape) and compare their effects on static and dynamic balance in persons with asymptomatic flexible flatfoot. Methods: Twenty-two subjects (9 females and 13 males) with asymptomatic flexible flatfoot participated in this study. The subjects performed the Y-balance test to measure the composite reach score. The subjects also performed a 30-second standing test to measure the center of pressure (COP) path length and a walking test to measure anteroposterior and lateral variability using the Zebris FDM system. One-way repeated-measures analysis of variance compared the three conditions applied to the subjects' feet for each balance variable. Results: The composite reach score significantly increased following the application of dynamic tape compared with barefoot and that of kinesio tape compared with barefoot. There was no significant difference in the COP path length during standing among the three conditions. Anteroposterior and lateral variability during walking significantly with dynamic tape application compared with barefoot. Conclusion: The results of this study suggest that, in persons with asymptomatic flexible flatfoot, application of kinesio tape and dynamic tape may be effective in increasing the composite reach score in Y-balance test, whereas application of dynamic tape may be effective in reducing anteroposterior and lateral variability during walking.

무게평형진자를 가진 4족 로봇의 보행 실험 (Walking test of a quadruped robot with weight balancing oscillator)

  • 유재명;오상관;김영탁
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.446-449
    • /
    • 2002
  • Quadruped walking robot requires dynamic control to keep its stability in high speed walking. To keep its walking stability by control of only legs' Joint angle lowers energy efficiency. It is known that an animal or a human use the moving of the mass center of one's upper body to keep the stability. We have developed a quadruped walking robot with weight balancing oscillator that have high energy efficiency. In this study, walking tests are performed for the robot to verify the validity of the weight balancing oscillator.

  • PDF

이족보행로봇의 걸음새 제어를 위한 지능형 학습 제어기의 구현 (Implementation of an Intelligent Learning Controller for Gait Control of Biped Walking Robot)

  • 임동철;국태용
    • 전기학회논문지P
    • /
    • 제59권1호
    • /
    • pp.29-34
    • /
    • 2010
  • This paper presents an intelligent learning controller for repetitive walking motion of biped walking robot. The proposed learning controller consists of an iterative learning controller and a direct learning controller. In the iterative learning controller, the PID feedback controller takes part in stabilizing the learning control system while the feedforward learning controller plays a role in compensating for the nonlinearity of uncertain biped walking robot. In the direct learning controller, the desired learning input for new joint trajectories with different time scales from the learned ones is generated directly based on the previous learned input profiles obtained from the iterative learning process. The effectiveness and tracking performance of the proposed learning controller to biped robotic motion is shown by mathematical analysis and computer simulation with 12 DOF biped walking robot.

Walking load model for single footfall trace in three dimensions based on gait experiment

  • Peng, Yixin;Chen, Jun;Ding, Guo
    • Structural Engineering and Mechanics
    • /
    • 제54권5호
    • /
    • pp.937-953
    • /
    • 2015
  • This paper investigates the load model for single footfall trace of human walking. A large amount of single person walking load tests were conducted using the three-dimensional gait analysis system. Based on the experimental data, Fourier series functions were adopted to model single footfall trace in three directions, i.e. along walking direction, direction perpendicular to the walking path and vertical direction. Function parameters such as trace duration time, number of Fourier series orders, dynamic load factors (DLFs) and phase angles were determined from the experimental records. Stochastic models were then suggested by treating walking rates, duration time and DLFs as independent random variables, whose probability density functions were obtained from experimental data. Simulation procedures using the stochastic models are presented with examples. The simulated single footfall traces are similar to the experimental records.

다족 보행 로봇 시스템의 이동성 및 민첩성 (Mobility and Agility of Multi-legged Walking Robot System)

  • 심형원;이지홍
    • 제어로봇시스템학회논문지
    • /
    • 제14권11호
    • /
    • pp.1146-1154
    • /
    • 2008
  • This paper presents a method for the acceleration analysis of multi-legged walking robots in consideration of the frictional ground contact. This method is based on both unified dynamic equation for finding the acceleration of a robot's body and constraint equation for satisfying no-slip condition. After the dynamic equation representing relationship between actuator torques and body acceleration, is derived from the force and acceleration relationship between foot and body's gravity center, the constraint equation is formulated to reconfigure the maximum torque boundaries satisfying no-slip condition from given original actuator torque boundaries. From application of the reconfigured torques to the dynamic equation, interested acceleration boundaries are obtained. The approach based on above two equations, is adapted to the changes of degree-of-freedoms of legs as well as friction of ground. And the method provides the maximum translational and rotational acceleration boundaries of body's center that are achievable in every direction without occurring slipping at the contact points or saturating all actuators. Given the torque limits in infinite normsense, the resultant accelerations are derived as a polytope. From the proposed method, we obtained achievable acceleration boundaries of 4-legged and 6-legged walking robot system successfully.

척수마비환자 재활훈련용 왕복보행보조기에 관한 연구 (Study of a New Reciprocating Gait Orthosis for a Spinal Cord Injury Patient)

  • 김명회
    • 대한물리치료과학회지
    • /
    • 제9권1호
    • /
    • pp.81-88
    • /
    • 2002
  • This paper presents a design and a control of a New Reciprocating Gait Orthosis and dynamic walking simulation for this system. The New Reciprocating Gait Orthosis is distinguished from other one by which has a very light-weight and a new RGO type with servo motors. The gait of a New Reciprocating Gait Orthosis depends on the constrains of mechanical kinematics and initial posture. The stability of dynamic walking is investigated by ZMP(Zero Moment Point) of the New Reciprocating Gait Orthosis. It is designed according to a human wear type and is able to accomodate itself to human environments. The joints of each leg are adopted with a good kinematic characteristics. To test of the analysis of joint kinematic properties, we did the strain stress analysis of dynamic PLS and the study of FEM with a dynamic PLS. It will be expect that the spinal card injury patients are able to train effectively with a Reciprocating Gait Orthosis. The New Reciprocating Gait Orthosis was able to keep smooth walling by the orthotic servo motors and hybrid system, make a sequence of flexion and extension of the joint during the walking. Also, the New Reciprocating Gait Orthosis turned out to be a satisfactory orthosis for walling training, for the spinal cord injury patient.

  • PDF