• 제목/요약/키워드: Dynamic Testing

검색결과 1,029건 처리시간 0.029초

비파괴충격파 시험법을 이용한 동탄성계수 평가 (Evaluation of the Dynamic Modulus by using the Impact Resonance Testing Method)

  • 김도완;장병관;문성호
    • 한국도로학회논문집
    • /
    • 제16권3호
    • /
    • pp.35-41
    • /
    • 2014
  • PURPOSES : The dynamic modulus for a specimen can be determined by using either the non-destructed or destructed testing method. The Impact Resonance Testing (IRT) is the one of the non-destructed testing methods. The MTS has proved the source credibility and has the disadvantages which indicate the expensive equipment to operate and need a lot of manpower to manufacture the specimens because of the low repeatability with an experiment. To overcome these shortcomings from MTS, the objective of this paper is to compare the dynamic modulus obtained from IRT with MTS result and prove the source credibility. METHODS : The dynamic modulus obtained from IRT could be determined by using the Resonance Frequency (RF) from the Frequency Response Function (FRF) that derived from the Fourier Transform based on the Frequency Analysis of the Digital Signal Processing (DSP)(S. O. Oyadigi; 1985). The RF values are verified from the Coherence Function (CF). To estimate the error, the Root Mean Squared Error (RMSE) method could be used. RESULTS : The dynamic modulus data obtained from IRT have the maximum error of 8%, and RMSE of 2,000MPa compared to the dynamic modulus measured by the Dynamic Modulus Testing (DMT) of MTS testing machine. CONCLUSIONS : The IRT testing method needs the prediction model of the dynamic modulus for a Linear Visco-Elastic (LVE) specimen to improve the suitability.

충격공진시험을 이용한 다양한 공극률을 가진 투수성 아스팔트 혼합물의 동탄성계수 변화 측정에 관한 연구 (Study for Dynamic Modulus Change Measurement of Permeable Asphalt Mixtures with Various Porosity using Non-Destructive Impact Wave)

  • 장병관;양성린;문성호
    • 한국도로학회논문집
    • /
    • 제15권3호
    • /
    • pp.65-74
    • /
    • 2013
  • PURPOSES: This study is to evaluate the dynamic modulus changes of permeable asphalt mixtures by using non-destructive impact testing method and to compare the dynamic moduli of permeable asphalt mixtures through repeated freezing and thawing conditions. METHODS: For the study, non-destructive impact testing method is used in order to obtain dynamic modulus of asphalt specimen and to confirm the change of dynamic modulus before and after freezing and thawing conditions. RESULTS : This study has shown that the dynamic moduli of asphalt concrete specimens consisting of 10%, 15% and 20% porosity are reduced by 11.851%, 1.9564%, 24.593% after freezing and thawing cycles. CONCLUSIONS : Non-destructive impact testing method is very useful and has repeatability. Specimen with 15% porosity has high durability than others.

차체용 부재의 동적 인장 특성 및 충돌 특성 평가를 위한 시험장비 개발 (Testing Equipments for the Evaluation of Dynamic Tensile characteristics and the Crashworthiness of Auto-body Members)

  • 허훈;김석봉
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.21-24
    • /
    • 2007
  • This paper deals with introduction of testing equipments for the evaluation of dynamic tensile characteristics of auto-body steel sheets and the crashworthiness of auto-body members. The servo-hydraulic high speed material testing machine was developed for tensile tests at the intermediate strain rate to obtain the tensile material properties at the strain rate under 500/sec. The split Hopkinson bar apparatus using the elastic wave was developed for dynamic material characteristics at the high strain rate ranged from 1,000 to 10,000/sec. The servo-hydraulic high speed crash testing machine is the equipment for the evaluation of the collapse load and crashworthiness of auto-body members. High speed carrying truck crashes to specimen with the maximum velocity of 17 m/sec.

  • PDF

In situ dynamic investigation on the historic "İskenderpaşa" masonry mosque with non-destructive testing

  • Gunaydin, Murat
    • Smart Structures and Systems
    • /
    • 제26권1호
    • /
    • pp.1-10
    • /
    • 2020
  • Turkey is a transcontinental country located partly in Asia and partly in Europe, and hosted by diverse civilizations including Hittite, Urartu, Lydia, Phrygia, Pontius, Byzantine, Seljuk's and Ottomans. At various times, these built many historic monuments representing the most significant characteristics of their civilizations. Today, these monuments contribute enormously to the esthetic beauty of environment and important to many cities of Turkey in attracting tourism. The survival of these monuments depends on the investigation of structural behavior and implementation of needed repairing and/or strengthening applications. Hence, many countries have made deeper investigations and regulations to assess their monuments' structural behavior. This paper presents the dynamic behavior investigation of a monumental masonry mosque, the "İskenderpaşa Mosque" in Trabzon (Turkey), by performing an experimental examination with non-destructive testing. The dynamic behavior investigation was carried out by determining the dynamic characteristic called as natural frequencies, mode shapes and damping ratios. The experimental dynamic characteristics were extracted by Operational Modal Analysis (OMA). In addition, Finite Element (FE) model of masonry mosque was constructed in ANSYS software and the numerical dynamic characteristics such as natural frequencies and mode shapes were also obtained and compared to experimental ones. The paper aims at presenting the non-destructive testing procedure of a masonry mosque as well as the comparison of experimental and numerical dynamic characteristics obtained from the mosque.

Dynamic Power Supply Current Testing for Open Defects in CMOS SRAMs

  • Yoon, Doe-Hyun;Kim, Hong-Sik;Kang, Sung-Ho
    • ETRI Journal
    • /
    • 제23권2호
    • /
    • pp.77-84
    • /
    • 2001
  • The detection of open defects in CMOS SRAM has been a time consuming process. This paper proposes a new dynamic power supply current testing method to detect open defects in CMOS SRAM cells. By monitoring a dynamic current pulse during a transition write operation or a read operation, open defects can be detected. In order to measure the dynamic power supply current pulse, a current monitoring circuit with low hardware overhead is developed. Using the sensor, the new testing method does not require any additional test sequence. The results show that the new test method is very efficient compared with other testing methods. Therefore, the new testing method is very attractive.

  • PDF

Analysis of delay compensation in real-time dynamic hybrid testing with large integration time-step

  • Zhu, Fei;Wang, Jin-Ting;Jin, Feng;Gui, Yao;Zhou, Meng-Xia
    • Smart Structures and Systems
    • /
    • 제14권6호
    • /
    • pp.1269-1289
    • /
    • 2014
  • With the sub-stepping technique, the numerical analysis in real-time dynamic hybrid testing is split into the response analysis and signal generation tasks. Two target computers that operate in real-time may be assigned to implement these two tasks, respectively, for fully extending the simulation scale of the numerical substructure. In this case, the integration time-step of solving the dynamic response of the numerical substructure can be dozens of times bigger than the sampling time-step of the controller. The time delay between the real and desired feedback forces becomes more striking, which challenges the well-developed delay compensation methods in real-time dynamic hybrid testing. This paper focuses on displacement prediction and force correction for delay compensation in the real-time dynamic hybrid testing with a large integration time-step. A new displacement prediction scheme is proposed based on recently-developed explicit integration algorithms and compared with several commonly-used prediction procedures. The evaluation of its prediction accuracy is carried out theoretically, numerically and experimentally. Results indicate that the accuracy and effectiveness of the proposed prediction method are of significance.

가상시험법을 이용한 알루미늄 너클의 내구수명 평가 (Durability Performance Evaluation of an Aluminum Knuckle using Virtual Testing Method)

  • 고한영;최규재
    • 한국자동차공학회논문집
    • /
    • 제18권1호
    • /
    • pp.44-50
    • /
    • 2010
  • Durability performance evaluation technology using Virtual Testing Method is a new concept of a vehicle design, which can reduce the automotive components design period and cost. In this paper, the fatigue life of an aluminum knuckle of a passenger car is evaluated using virtual testing method. The flexible multibody dynamic model of a front half car module is generated and solved with service loads which are measured from Belgian roads. Using a multibody dynamic analysis software, the flexible multibody dynamic simulation of a half car model is carried out and the dynamic stress profile of an aluminum knuckle is acquired. The stress profile is exported to a fatigue analysis software and durability performance of an aluminum knuckle is evaluated.

Static and Dynamic Testing Technique of Inductor Short Turn

  • Piyarat, W.;Tipsuwanporn, V.;Tarasantisuk, C.;Kummool, S.;Im, T.Sum
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.281-283
    • /
    • 1999
  • This topic presents an inductor short turn testing. From the rudimentary principles, the quality factor(Q) decreases due to inductor short turn. Frequency response varies because of the variation of circuit inductance and resistance. In general, short turn circuit testing is performed by comparing the ratio of an inductance and resistance of inductor in that particular circuit. An alternative method can be done by considering the response of second order circuit which can give both dynamic and static testing, whereas static testing give an error results not more than 2 turns. For dynamic testing, the result is more accurate, which can test fur the short turn number form 1 turn onward.

  • PDF

주문진 표준사를 이용한 대형 공진주 시험 장비의 검증 (Verification of the large scale, free-free resonant testing equipment using Jumunjin sand)

  • 박인범;박철수;목영진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1415-1424
    • /
    • 2009
  • Measuring dynamic properties of gravel-sized materials demands large specimens. Due to the difficulties in experiment as well as equipment, the dynamic properties of gravel-sized material has rarely been investigated. To realize free-free end condition more properly and stabilize specimen during testing with new specimen support system, a free-free resonant column testing device, which is capable of testing gravel-sized materials and constraining a specimen in free-free boundaries, is developed. We report the calibration of the equipment and preliminary testing results on Jumunjin sand. The testing data are compared with the previous data obtained from the existing fixed-free resonant column test.

  • PDF