• 제목/요약/키워드: Dynamic Surface Control

검색결과 370건 처리시간 0.025초

휴대전화 이용이 자세조절에 미치는 영향 (Effects of Using a Mobile Phone on Postural Control)

  • 원종임
    • 한국전문물리치료학회지
    • /
    • 제19권3호
    • /
    • pp.61-71
    • /
    • 2012
  • In daily activities, people often perform two or more tasks simultaneously. This is referred to as dual-tasking or multi-tasking. The purpose of this study was to examine the effects of performing dual tasks while using a mobile phone on static and dynamic postural stability. Twenty-four subjects were asked to stand on a force plate and then instructed to perform a balance task only (BT), a balance task while listening to music (BTL), a balance task while talking on the mobile phone (BTT), and a balance task while sending text messages (BTS). We used the BioRescue$^{(R)}$ to measure postural sway and limit of stability for static and dynamic postural stability. Also the star excursion balance test (SEBT) was used to measure dynamic postural stability. A one-way ANOVA with repeated measures was used to compare the effects of the BT, BTL, BTT, and BTS. The Bonferroni's post hoc test was used to determine the differences among four tasks. Carrying out the BTS significantly decreased the limit of stability compared with carrying out the BT, BTL, and BTT (p<.05). In limit of stability, total surface area of BTT was more significantly decreased than that of BT and total surface area of BTS was more decreased than that of BT, BTL and BTT (p<.05). In the SEBT, the BTS displayed significantly smaller reach distance values compared with the BT or BTL (p<.05). These findings suggest that performing the balance task while sending text message on the mobile phone decreases dynamic postural stability, whereas performing the same task while listening to music using the mobile phone does not. Therefore, it requires more attention to maintain dynamic balance while sending text messages.

고속 밀링 주축용 자기베어링 시스템의 디지털 제어기 설계 (Digital Controller Design of a Magnetic Bearing System for High Speed Milling Spindle)

  • 노승국;경진호;박종권
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.398-403
    • /
    • 2004
  • The demand of high speed machining is increasing because the high speed cutting providers high efficiency of process, short process time, improved metal removal capacity and better surface finish. Active magnetic bearings allow much high surface speed than conventional ball bearings and therefore greatly suitable for high speed cutting. The automatic control concept of magnetic bearing system provides ability of intelligent control of spindle system to increase accuracy and flexibility by means of adaptive vibration control. This paper describes a design and development of a milling spindle system which includes built-in motor with power 5.5㎾ and maximum speed 70,000rpm, HSK-32C tool holer and active magnetic bearing system. Magnetic actuators are designed for satisfying static load condition. The Performances of manufactured spindle system was examined for its static and dynamic stiffness, load capacity, and rotational accuracy. This spindle was run up to 70,000 rpm stably, which is 3.5 million DmN.

  • PDF

다변수 계통에 대한 출력궤환 가벼구조 제어계에 관한 연구 (Design of the output feedback variable structure control system for multivariable system)

  • 이기상;조동식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.197-202
    • /
    • 1991
  • Recently, an output feedback variable structure control scheme(OFVSCS) is proposed to remove the assumption of full state availability and to make the application of VSC scheme to the high order systems with unmeasurable state variables possible. In this paper, a design method of an output feedback variable structure control system (IOFVSCS) that guarantees the invariance of the sliding mode against process parameter variation and external disturbance is proposed. The IOFVSCS is composed of two components; dynamic switching surface driven by measured I/0 informations and switching control input generator driven by switching surface information and measured output, where the two components are constructed by adopting unknown vector modelling approach. The invariance condition for the IOFVSCS is proved to be the same as that of the conventional VSCS. Simulation results show that the IOFVSCS can be designed to have robust properties better than that of the conventional VSCS in spite that the IOFVSCS is driven by small amount of measured information.

  • PDF

Multi-level DVS Guidance and Output-feedback Path-following Control for Marine Surface Vehicles

  • Deng, Ying-Jie;Im, Nam-kyun
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2018년도 추계학술대회
    • /
    • pp.256-257
    • /
    • 2018
  • This paper deals with the path-following control for marine surface vehicles with underactuated characteristics. In consideration of practical limitations of actuators, an improved DVS(dynamic virtual ship) guidance algorithm is proposed with the multi-level DVS optionally selected to be tracked. To address the output-feedback control issue, an adaptive FLS(fuzzy logical systems) is devised to online approximate the kinematic states. Based on that observing framework, the path-following control law is thereafter derived. Simulations testify effectiveness of the proposed scheme

  • PDF

바닥복사 난방공간의 효율적인 난방제어방법 (The Effective Heating Control Method of the Radiant Floor Heating System)

  • 조성환;태춘섭
    • 설비공학논문집
    • /
    • 제8권3호
    • /
    • pp.317-329
    • /
    • 1996
  • By describing the floor slab of a radiant heating system as a one dimensional transient heat exchanger problem, a dynamic analysis model to incorperate with TRNSYS program was developed and their results were compared with experimental results. Results showed that the both of TPOC(Two Parameter On-off Control) and TPSC(Two Parameter Switching Control) method using room air temperature and floor surface temperature as the control parameters does not maintain room air and floor surface temperature exactly at the setting temperatures. But TPSC method is a better candidate for the temperature regulations of room air and floor surface temperature than TPOC method which can keep on the upper and lower limit temperature according to outside temeperature and wall structure etc. And better thermal circumstance can be given by TPSC method than On-off and TPOC method and the overheating which can be occured at the radiant floor heating system with on-off heating control will be reduced.

  • PDF

조립용 로봇의 가변구조 적응제어 (Variable Structure Adaptive Control of Assembling Robot)

  • 한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1997년도 춘계학술대회 논문집
    • /
    • pp.131-136
    • /
    • 1997
  • This paper represent the variable structure adaptive mode control technique which is new approach to implement the robust control of industrial robot manipulator with external disturbances and parameter uncertainties. Sliding mode control is a well-known technique for robust control of uncertain nonlinear systems. The robustness of sliding model controllers can be shown in contiuous time, but digital implementation may not preserve robustness properties because the sampling process limits the existence of a true sliding mode. the sampling process often forces the trajectory to oscillate in the neighborhood of the sliding surface. Adaptive control technique is particularly well-suited to robot manipulators where dynamic model is highly complex and may contain unknown parameters. Adaptive control algorithm is designed by using the principle of the model reference adaptive control method based upon the hyperstability theory. The proposed control scheme has a simple sturcture is computationally fast and does not require knowledge of the complex dynamic model or the parameter values of the manipulator or the payload. Simulation results show that the proposed method not only improves the performance of the system but also reduces the chattering problem of sliding mode control, Consequently, it is expected that the new adaptive sliding mode control algorithm will be suited for various practical applications of industrial robot control system.

  • PDF

The Assessment of the Postural Control Ability of the Volleyball Players With Functional Ankle Instability Using Balance Master System

  • Kim, Ho-Sung;Ahn, Chang-Sik;Choi, Jong-Duk
    • 한국전문물리치료학회지
    • /
    • 제15권4호
    • /
    • pp.18-26
    • /
    • 2008
  • The present study was aimed at investigating the postural control ability of volleyball players with functional ankle instability. The subjects were 26 male volleyball players were divided into 2 groups (13 subjects with functional ankle instability and 13 subjects with ankle stability) who could evaluate Questionnaire. All the male participants were tested by a Balance Master System. This study were to measure of static balance ability, dynamic balance ability, motor function the difference between functional ankle instability group and control group. Ankle instability group and stable group in postural sway ($^{\circ}/sec$) on film surface with eye closed in modified clinical test sensory interaction on balance, and left unilateral stance with eye opened and closed were significantly different (p<.05). The ankle instability group and stable group in limit of stability were significantly different (p<.05). The ankle instability group and stable group in left/right rhythmic weight shirt were significantly different (p<.05). The ankle instability group and stable group in turn time (sec) & turn sway ($^{\circ}$) during step/quick turn and end sway ($^{\circ}/sec$) in tandem walk were significantly different (p<.05). This study showed that volleyball players with functional ankle in stability were effected postural control ability by static balance & dynamic balance ability. Further study is needed to measure various athletic with functional ankle instability for clinical application.

  • PDF

A Robust Dynamic Decoupling Control Scheme for PMSM Current Loops Based on Improved Sliding Mode Observer

  • Shen, Hanlin;Luo, Xin;Liang, Guilin;Shen, Anwen
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1708-1719
    • /
    • 2018
  • A complete current loop decoupling control strategy based on a sliding mode observer (SMO) is proposed to eliminate the influence of current dynamic coupling and back electromotive force (EMF) in the vector control of permanent magnet synchronous motors. With this strategy, current dynamic decoupling and back EMF compensation can be simultaneously achieved. Unlike conventional methods, the proposed strategy can avoid the disturbances caused by the parametric variations of motor systems and maintain the advantages of proportional integral (PI) controllers, which are robust and easy to operate. An improved SMO, which uses a special PI regulator other than a linear saturation function as the equivalent control law in the boundary layer of a sliding surface, is proposed to eliminate the estimated errors caused by the quasi-sliding mode and obtain a satisfactory decoupling performance. The stability and parameter robustness of the proposed strategy are also analyzed. Physical experimental results are presented to verify the validity of the method.

차륜과 철로의 연성진동에 관한 연구 (A Study on the Coupled Vibration of Train wheel and Rail Dynamic Chaacteristics of Train Wheel with the Stepped Thickness)

  • 김광식;박문태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.142-144
    • /
    • 1986
  • The research was conducted for the purpose of examining the dynamic characteristics of train wheel at the running state and preventing the vibrations of the high speed railway. The stress at the boundary surface of web and rim, .sigma./sub c/, was analyzed in consideration of the uniform In-plane compressive stress depending on the conditions of rolling and the rotation of train wheel. Then the equation of transverse vibration of the annular plate with the stepped thickness was analyzed by Rayleigh-Ritz's method.

  • PDF

Fine Feature Sensing and Restoration by Tactile Examination of PVDF Sensor

  • Yoon, Seong-Sik;Kang, Sung-Chul;Lee, Woo-Sub;Choi, Hyouk-Ryeol;Oh, Sang-Rok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.942-947
    • /
    • 2003
  • An important signal processing problem in PVDF sensor is the restoration of surface information from electric sensing signals. The objectives of this research are to design a new texture sensing system and to develop a new signal processing algorithm for signals from the sensor to be tangibly displayed by tangible interface systems. The texture sensing system is designed to get surface information with high resolution and dynamic range. First, a PVDF sensor is made of piezoelectric polymer (polyvinylidene fluoride) strips molded in a silicon rubber and attached in a rigid cylinder body. The sensor is mounted to a scanning system for dynamic sensing. Secondly, a new signal processing algorithm is developed to restore surface information. The algorithm consists of the two-dimensional modeling of the sensor using an identification method and inverse filtering from sensing signals into estimated surface information. Finally the two-dimensional surface information can be experimentally reconstructed from sensing signals using the developed signal processing algorithm.

  • PDF