• Title/Summary/Keyword: Dynamic Structural Optimization

Search Result 338, Processing Time 0.039 seconds

A two-stage structural damage detection method using dynamic responses based on Kalman filter and particle swarm optimization

  • Beygzadeh, Sahar;Torkzadeh, Peyman;Salajegheh, Eysa
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.593-607
    • /
    • 2022
  • To solve the problem of detecting structural damage, a two-stage method using the Kalman filter and Particle Swarm Optimization (PSO) is proposed. In this method, the first PSO population is enhanced using the Kalman filter method based on dynamic responses. Due to noise in the sensor responses and errors in the damage detection process, the accuracy of the damage detection process is reduced. This method proposes a novel approach for solve this problem by integrating the Kalman filter and sensitivity analysis. In the Kalman filter, an approximate damage equation is considered as the equation of state and the damage detection equation based on sensitivity analysis is considered as the observation equation. The first population of PSO are the random damage scenarios. These damage scenarios are estimated using a step of the Kalman filter. The results of this stage are then used to detect the exact location of the damage and its severity with the PSO algorithm. The efficiency of the proposed method is investigated using three numerical examples: a 31-element planer truss, a 52-element space dome, and a 56-element space truss. In these examples, damage is detected for several scenarios in two states: using the no noise responses and using the noisy responses. The results show that the precision and efficiency of the proposed method are appropriate in structural damage detection.

Structural Design Optimization of Dynamic Crack Propagation Problems Using Peridynamics (페리다이나믹스를 이용한 균열진전 문제의 구조 최적설계)

  • Kim, Jae-Hyun;Park, Soomin;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.425-431
    • /
    • 2015
  • Based on a bond-based peridynamics theory for dynamic crack propagation problems, this paper presents a design sensitivity analysis and optimization method. Peridynamics has a peculiar advantage over the existing continuum theory in the mathematical modelling of problems where discontinuities arise. For the design optimization of the crack propagation problems, a non-shape design sensitivity is derived using the adjoint variable method. The obtained adjoint sensitivity of displacement and strain energy turns out to be very accurate and efficient compared to the finite different sensitivity. The obtained design sensitivities are futher utilized to optimally control the position of bifurcation point in the design optimization of crack propagation in a plate under tension. A numerical experiment demonstrates that the optimal distribution of material density could delay the position of bifurcation.

Multi-Level and Multi-Objective Optimization of Framed Structures Using Automatic Differentiation (자동미분을 이용한 뼈대구조의 다단계 다목적 최적설계)

  • Cho, Hyo-Nam;Min, Dae-Hong;Lee, Kwang-Min;Kim, Hoan-Kee
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.177-186
    • /
    • 2000
  • An improved multi-level(IML) optimization algorithm using automatic differentiation (AD) for multi-objective optimum design of framed structures is proposed in this paper. In order to optimize the steel frames under seismic load, two main objective functions need to be considered for minimizing the structural weight and maximizing the strain energy. For the efficiency of the proposed algorithm, multi-level optimization techniques using decomposition method that separately utilizes both system-level and element-level optimizations and an artificial constraint deletion technique are incorporated in the algorithm. And also to save the numerical efforts, an efficient reanalysis technique through approximated structural responses such as moments, frequencies, and strain energy with respect to intermediate variables is proposed in the paper. Sensitivity analysis of dynamic structural response is executed by AD that is a powerful technique for computing complex or implicit derivatives accurately and efficiently with minimal human effort. The efficiency and robustness of the IML algorithm, compared with a plain multi-level (PML) algorithm, is successfully demonstrated in the numerical examples.

  • PDF

Finite Element Model Building Procedure of an External Mounting Pod for Structural Dynamic Characteristics Analysis of an Aircraft (항공기 구조 동특성 해석을 위한 외부 장착 포드의 유한요소모델 구축 절차)

  • Lee, Jong-Hak;Ryu, Gu-Hyun;Yang, Sung-Chul;Jung, Dae-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.72-77
    • /
    • 2011
  • In this study, the natural frequencies and mode shape of an external mounting pod were verified using the modal analysis and modal testing technique for a pod mounted on an aircraft. The procedure associated with the FEM building of an external mounted pod to predict the dynamic behavior of aircraft structures is described. The simplified FEM reflecting the results of the modal testing of a pod is built through the optimization, applied to the structural dynamic model of an Aircraft, used to verified the stability of vibration and flutter of an aircraft.

  • PDF

The Optimum Modification of Dynamic Characteristics of Stiffened Plate Structure Including the Number of Stiffener (보강재의 수를 포함한 보강판 구조물의 동특성의 최적변경)

  • 박성현;고재용
    • Journal of the Korean Institute of Navigation
    • /
    • v.25 no.4
    • /
    • pp.461-469
    • /
    • 2001
  • The purpose of this paper is the optimum modification of dynamic characteristics of stiffened plate structure including the number of stiffener. This paper shows the optimum structural modification method by dynamic sensitivity analysis and quasi-least squares method and considers it's validity. In the method of the optimization, finite element method, sensitivity analysis and optimum structural modification method are used. The change of natural frequency and total weight are made to be an objective function. Thickness of plate, the number of stiffener and cross section moment of stiffener become a design variable. The dynamic characteristics of stiffened plate structure is analyzed using finite element method. Next, rate of change of dynamic characteristics by the change of design variable is calculated using the sensitivity analysis. Then, amount of change of design variable is calculated using optimum structural modification method. It is shown that the results are effective in the optimum modification for dynamic characteristics of the stiffened plate structure including the number of stiffener.

  • PDF

Integrated Dynamic Simulation of a Magnetic Bearing Stage and Control Design (자기베어링 스테이지의 동적 거동 통합 시뮬레이션을 통한 제어 설계)

  • Kim, Byung-Sub
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.730-734
    • /
    • 2013
  • The dynamic simulation of machine tools and motion control systems has been widely used for optimization, design verification, control design, etc. There are three main streams in dynamic simulation: structural dynamic analysis based onthe finite element method, dynamic motion analysis based on equations of motion, and control system analysis based on transfer functions. Generally, one of these dynamic simulation methods is chosen and employed for specific purposes. In this study, an integrated dynamic simulation is introduced, in which the structure, motion, and control dynamics are combined together. Commercially well-known software is used in the integrated dynamic simulation: ANSYS, ADAMS, and Matlab/Simulink. Using the integrated dynamic simulation, the dynamics of a magnetic bearing stage is analyzed and the causes of oscillation and noise are identified. A controller design for suppressing a flexible dynamic mode is carried out and verified through the integrated dynamic simulation.

Structural optimal control based on explicit time-domain method

  • Taicong Chen;Houzuo Guo;Cheng Su
    • Structural Engineering and Mechanics
    • /
    • v.85 no.5
    • /
    • pp.607-620
    • /
    • 2023
  • The classical optimal control (COC) method has been widely used for linear quadratic regulator (LQR) problems of structural control. However, the equation of motion of the structure is incorporated into the optimization model as the constraint condition for the LQR problem, which needs to be solved through the Riccati equation under certain assumptions. In this study, an explicit optimal control (EOC) method is proposed based on the explicit time-domain method (ETDM). By use of the explicit formulation of structural responses, the LQR problem with the constraint of equation of motion can be transformed into an unconstrained optimization problem, and therefore the control law can be derived directly without solving the Riccati equation. To further optimize the weighting parameters adopted in the control law using the gradient-based optimization algorithm, the sensitivities of structural responses and control forces with respect to the weighting parameters are derived analytically based on the explicit expressions of dynamic responses of the controlled structure. Two numerical examples are investigated to demonstrate the feasibility of the EOC method and the optimization scheme for weighting parameters involved in the control law.

Colliding bodies optimization for size and topology optimization of truss structures

  • Kaveh, A.;Mahdavi, V.R.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.847-865
    • /
    • 2015
  • This paper presents the application of a recently developed meta-heuristic algorithm, called Colliding Bodies Optimization (CBO), for size and topology optimization of steel trusses. This method is based on the one-dimensional collisions between two bodies, where each agent solution is considered as a body. The performance of the proposed algorithm is investigated through four benchmark trusses for minimum weight with static and dynamic constraints. A comparison of the numerical results of the CBO with those of other available algorithms indicates that the proposed technique is capable of locating promising solutions using lesser or identical computational effort, with no need for internal parameter tuning.

Multi-Level Optimization for Steel Frames using Discrete Variables (이산형 변수를 이용한 뼈대구조물의 다단계 최적설계)

  • 조효남;민대용;박준용
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.115-124
    • /
    • 2000
  • An efficient multi-level (EML) optimization algorithm using discrete variables of framed structures is proposed in this paper. For the efficiency of the proposed algorithm multi-level optimization techniques using a decomposition method that separates both system-level and element-level are incorporated in the algorithm In the system-level, to save the numerical efforts an efficient reanalysis technique through approximated structural responses such as moments and frequencies with respect to intermediate variables is proposed in the paper. Sensitivity analysis of dynamic structural response is executed by automatic differentiation (AD) that is a powerful technique for computing complex or implicit derivatives accurately and efficiently with minimal human effort. In the element-level, to use AISC W-sections a section search algorithm is introduced. The efficiency and robustness of the EML algorithm, compared with a conventional multi-level (CML) algorithm and single-level genetic algorithm is successfully demonstrated in the numerical examples.

  • PDF

Optimization of active vibration control for random intelligent truss structures under non-stationary random excitation

  • Gao, W.;Chen, J.J.;Hu, T.B.;Kessissoglou, N.J.;Randall, R.B.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.2
    • /
    • pp.137-150
    • /
    • 2004
  • The optimization of active bars' placement and feedback gains of closed loop control system for random intelligent truss structures under non-stationary random excitation is presented. Firstly, the optimal mathematical model with the reliability constraints on the mean square value of structural dynamic displacement and stress response are built based on the maximization of dissipation energy due to control action. In which not only the randomness of the physics parameters of structural materials, geometric dimensions and structural damping are considered simultaneously, but also the applied force are considered as non-stationary random excitation. Then, the numerical characteristics of the stationary random responses of random intelligent structure are developed. Finally, the rationality and validity of the presented model are demonstrated by an engineering example and some useful conclusions are obtained.