• Title/Summary/Keyword: Dynamic Spectrum Management

Search Result 20, Processing Time 0.021 seconds

PERFORMANCE OF MYOPIC POLICY FOR MULTI-CHANNEL DYNAMIC SPECTRUM ACCESS NETWORKS

  • Lee, Yutae
    • East Asian mathematical journal
    • /
    • v.30 no.1
    • /
    • pp.23-29
    • /
    • 2014
  • To solve inefficient spectrum usage problem under current static spectrum management policy, various kinds of dynamic spectrum access strategies have appeared. Myopic policy, which maximizes immediate throughput, is a simple and robust strategy with reduced complexity. In this paper, we present a simple mathematical model to evaluate the saturation throughput and medium access delay of a myopic policy in the presence of multiple channels.

Spectrum Management Models for Cognitive Radios

  • Kaur, Prabhjot;Khosla, Arun;Uddin, Moin
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.222-227
    • /
    • 2013
  • This paper presents an analytical framework for dynamic spectrum allocation in cognitive radio networks. We propose a distributed queuing based Markovian model each for single channel and multiple channels access for a contending user. Knowledge about spectrum mobility is one of the most challenging problems in both these setups. To solve this, we consider probabilistic channel availability in case of licensed channel detection for single channel allocation, while variable data rates are considered using channel aggregation technique in the multiple channel access model. These models are designed for a centralized architecture to enable dynamic spectrum allocation and are compared on the basis of access latency and service duration.

Performance Analysis of Dynamic Spectrum Allocation in Heterogeneous Wireless Networks

  • Ha, Jeoung-Lak;Kim, Jin-Up;Kim, Sang-Ha
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.292-301
    • /
    • 2010
  • Increasing convergence among heterogeneous radio networks is expected to be a key feature of future ubiquitous services. The convergence of radio networks in combination with dynamic spectrum allocation (DSA) could be a beneficial means to solve the growing demand for radio spectrum. DSA might enhance the spectrum utilization of involved radio networks to comply with user requirements for high-quality multimedia services. This paper proposes a simple spectrum allocation algorithm and presents an analytical model of dynamic spectrum resource allocation between two networks using a 4-D Markov chain. We argue that there may exist a break-even point for choosing whether or not to adopt DSA in a system. We point out certain circumstances where DSA is not a viable alternative. We also discuss the performance of DSA against the degree of resource sharing using the proposed analytical model and simulations. The presented analytical model is not restricted to DSA, and can be applied to a general resource sharing study.

An Oligopoly Spectrum Pricing with Behavior of Primary Users for Cognitive Radio Networks

  • Lee, Suchul;Lim, Sangsoon;Lee, Jun-Rak
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1192-1207
    • /
    • 2014
  • Dynamic spectrum sharing is a key technology to improve spectrum utilization in wireless networks. The elastic spectrum management provides a new opportunity for licensed primary users and unlicensed secondary users to efficiently utilize the scarce wireless resource. In this paper, we present a game-theoretic framework for dynamic spectrum allocation where the primary users rent the unutilized spectrum to the secondary users for a monetary profit. In reality, due to the ON-OFF behavior of the primary user, the quantity of spectrum that can be opportunistically shared by the secondary users is limited. We model this situation with the renewal theory and formulate the spectrum pricing scheme with the Bertrand game, taking into account the scarcity of the spectrum. By the Nash-equilibrium pricing scheme, each player in the game continually converges to a strategy that maximizes its own profit. We also investigate the impact of several properties, including channel quality and spectrum substitutability. Based on the equilibrium analysis, we finally propose a decentralized algorithm that leads the primary users to the Nash-equilibrium, called DST. The stability of the proposed algorithm in terms of convergence to the Nash equilibrium is also studied.

Performance Evaluation of Myopic Policy for Dynamic Spectrum Access (동적 스펙트럼 접속을 위한 myopic 방식의 성능 분석)

  • Lee, Yutae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.5
    • /
    • pp.1101-1105
    • /
    • 2013
  • Due to underutilization of spectrum under the current static spectrum management policy, various kinds of dynamic spectrum access strategies have appeared. Myopic policy is a simple policy with reduced complexity that maximizes the immediate throughput. In this paper, the distribution of its medium access delay is evaluated under saturation traffic conditions. Using the distribution of the medium access delay, we also evaluate its system delay under non-saturated traffic conditions.

Spectrum allocation strategy for heterogeneous wireless service based on bidding game

  • Cao, Jing;Wu, Junsheng;Yang, Wenchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1336-1356
    • /
    • 2017
  • The spectrum scarcity crisis has resulted in a shortage of resources for many emerging wireless services, and research on dynamic spectrum management has been used to solve this problem. Game theory can allocate resources to users in an economic way through market competition. In this paper, we propose a bidding game-based spectrum allocation mechanism in cognitive radio network. In our framework, primary networks provide heterogeneous wireless service and different numbers of channels, while secondary users have diverse bandwidth demands for transmission. Considering the features of traffic and QoS demands, we design a weighted interference graph-based grouping algorithm to divide users into several groups and construct the non-interference user-set in the first step. In the second step, we propose the dynamic bidding game-based spectrum allocation strategy; we analyze both buyer's and seller's revenue and determine the best allocation strategy. We also prove that our mechanism can achieve balanced pricing schema in competition. Theoretical and simulation results show that our strategy provides a feasible solution to improve spectrum utilization, can maximize overall utility and guarantee users' individual rationality.

Technology Trends on Spectrum Management and Dynamic Spectrum Access (스펙트럼 관리 및 동적접속 기술동향)

  • Yoon, Y.K.;Park, S.K.
    • Electronics and Telecommunications Trends
    • /
    • v.26 no.6
    • /
    • pp.129-138
    • /
    • 2011
  • 미래의 고속 및 광대역 서비스에 대한 수요 증가로, 부족한 스펙트럼을 효율적으로 사용할 수 있는 스펙트럼 관리(spectrum management) 방법의 중요성이 대두되고 있다. 또한, 트래픽 폭증 및 멀티미디어 제공 등 서비스 확대에 대응할 수 있는 유연한 스펙트럼 접속(spectrum access) 기술, 공유(sharing)에 대한 필요성도 증대되고 있다. 이러한 중요성 및 필요성에 기인해, 효율적으로 스펙트럼을 공유할 수 있는 방법으로 언더레이, 오버레이 방식 등이 제안되었고, UWB 및 인지무선(cognitive radio)과 같은 공유 기술 등이 발전하게 되었다. 본 고에서는 효율적 주파수 이용을 위한 스펙트럼 관리 방법 및 주파수 공유 기술로 기존의 주파수 대역에서 충분히 낮은 출력으로 전파를 송출하는 언더레이 방식, 기회주의적인 오버레이 동적접속 기술, 면허권자인 1차 우선 사용자(primary user)와 2차 면허권자(secondary user) 간의 동적접속 기술에 대한 국내 외 기술동향을 상세히 소개하고자 한다.

  • PDF

A Study on Evaluation of Floor Response Spectrum for Seismic Design of Non-Structural Components (비구조요소의 내진 설계를 위한 기존 층응답스펙트럼의 평가)

  • Choi, Kyung Suk;Yi, Waon Ho;Yang, Won-Jik;Kim, Hyung Joon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.279-291
    • /
    • 2013
  • The seismic damage of non-structural components, such as communication facilities, causes direct economic losses as well as indirect losses which result from social chaos occurring with downtime of communication and financial management network systems. The current Korean seismic code, KBC2009, prescribes the design criteria and requirements of non-structural components based on their elastic response. However, it is difficult for KBC to reflect the dynamic characteristics of structures where non-structural components exist. In this study, both linear and nonlinear time history analyses of structures with various analysis parameters were carried out and floor acceleration spectra obtained from analyses were compared with both ground acceleration spectra used for input records of the analyses and the design floor acceleration spectrum proposed by National Radio Research Agency. Also, this study investigates to find out the influence of structural dynamic characteristics on the floor acceleration spectra. The analysis results show that the acceleration amplification is observed due to the resonance phenomenon and such amplification increases with the increase of building heights and with the decrease of structure's energy dissipation capacities.

Hierarchical Dynamic Spectrum Management for Providing Network-wise Fairness in 5G Cloud RAN (5G Cloud RAN에서 네트워크 공평성 향상을 위한 계층적 적응 스펙트럼 관리 방법)

  • Jo, Ohyun
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.7
    • /
    • pp.1-6
    • /
    • 2020
  • A new resource management algorithm is proposed for 5G networks which have a coordinated network architecture. By sharing the contol information among multiple neighbor cells and managing in centralized structure, the propsed algorithm fully utilizes the benefits of network coordination to increase fairness and throughput at the same time. This optimization of network performance is achieved while operating within a tolerable amount of signaling overhead and computational complexity. Simulation results confirm that the proposed scheme improve the network capacity up to 40% for cell edge users and provide network-wise fairness as much as 23% in terms of the well-knwon Jain's Fainess Index.

A plant-specific HRA sensitivity analysis considering dynamic operator actions and accident management actions

  • Kancev, Dusko
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1983-1989
    • /
    • 2020
  • The human reliability analysis is a method by which, in general terms, the human impact to the safety and risk of a nuclear power plant operation can be modelled, quantified and analysed. It is an indispensable element of the PSA process within the nuclear industry nowadays. The paper herein presents a sensitivity study of the human reliability analysis performed on a real nuclear power plant-specific probabilistic safety assessment model. The analysis is performed on a pre-selected set of post-initiator operator actions. The purpose of the study is to investigate the impact of these operator actions on the plant risk by altering their corresponding human error probabilities in a wide spectrum. The results direct the fact that the future effort should be focused on maintaining the current human reliability level, i.e. not letting it worsen, rather than improving it.