• Title/Summary/Keyword: Dynamic Safety

Search Result 1,961, Processing Time 0.03 seconds

Reliability-based assessment of high-speed railway subgrade defect

  • Feng, Qingsong;Sun, Kui;Chen, Hua-peng
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.231-243
    • /
    • 2021
  • In this paper, a dynamic response mapping model of the wheel-rail system is established by using the support vector regression (SVR) method, and the hierarchical safety thresholds of the subgrade void are proposed based on the reliability theory. Firstly, the vehicle-track coupling dynamic model considering the subgrade void is constructed. Secondly, the subgrade void area, the subgrade compaction index K30 and the fastener stiffness are selected as random variables, and the mapping model between these three random parameters and the dynamic response of the wheel-rail system is built by using the orthogonal test and the SVR. The sensitivity analysis is carried out by the range analysis method. Finally, the hierarchical safety thresholds for the subgrade void are proposed. The results show that the subgrade void has the most significant influence on the carbody vertical acceleration, the rail vertical displacement, the vertical displacement and the slab tensile stress. From the range analysis, the subgrade void area has the largest effect on the dynamic response of the wheel-rail system, followed by the fastener stiffness and the subgrade compaction index K30. The recommended safety thresholds for the subgrade void of level I, II and III are 4.01㎡, 6.81㎡ and 9.79㎡, respectively.

Numerical analysis for dynamic characteristics of bridge considering next-generation high-speed train

  • Soon T. Oh;Dong J. Lee;Seong T. Yi;Byeong J. Jeong
    • Advances in Computational Design
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • To consider the effects of the increasing speed of next-generation high-speed trains, the existing traffic safety code for railway bridges needs to be improved. This study suggests a numerical method of evaluating the new effects of this increasing speed on railway bridges. A prestressed concrete (PSC) box bridge with a 40 m span length on the Gyeongbu track sector is selected as a representative example of high-speed railway bridges in Korea. Numerical models considering the inertial mass forces of a 38-degree-of-freedom train and the interaction forces with the bridge as well as track irregularities are presented in detail. The vertical deflections and accelerations of the deck are calculated and compared to find the new effects on the bridge arising with increasing speed under simply and continuously supported boundary conditions. The ratios between the static and dynamic responses are calculated as the dynamic amplification factors (DAFs) under different running speeds to evaluate the traffic safety. The maximum deflection and acceleration caused by the running speed are indicated, and regression equations for predicting these quantities based on the speed are also proposed.

A Study on the Development of Multi-Purpose Measurement System for the Evaluation of Ship Dynamic Motion (선체운동 평가를 위한 다목적 계측시스템 개발에 관한 연구)

  • Kim Chol-Seong;Lee Yun-Sok;Kong Gil-Young;Jung Chang-Hyun;Kim Dae-Hae;Cho Ik-Soon
    • Journal of Navigation and Port Research
    • /
    • v.29 no.10 s.106
    • /
    • pp.847-852
    • /
    • 2005
  • In order to evaluate the safety of navigation at sea and the safety of mooring on berthing, it is necessary that the wave and wind induced ship dynamic motion should be measured in real time domain for the validity of theoretical evaluation method such as sea-keeping performance and safety of mooring. In this paper, the basic design of sensors is discussed and some system configurations were shown. The developed system mainly consists of 4 kinds of sensors such as three-dimensional accelerator, two-dimensional tilt sensor, azimuth sensor and two displacement sensors. Using this measuring system, it can be obtained the 6 degrees of freedom of ship dynamic motions at sea and on berthing such as rolling, pitching, yawing, swaying, heaving, surging under the certain external forces.

Stability and Safety Analysis on the Next Generation High-Speed Railway Vehicle (차세대 고속철도의 안정성 및 안전성 해석)

  • Cho, Jae-Ik;Park, Tae-Won;Yoon, Ji-Won;Kim, Ji-Young;Kim, Young-Guk
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.3
    • /
    • pp.245-250
    • /
    • 2010
  • In this work, the stability and safety analysis are carried out to predict the performance of a next generation high-speed railway vehicle (HEMU-400X). Since the safety of the high-speed railway vehicles is very important, it is meaningful to predict the dynamic performance and stability of the railway vehicles using a numerical model at a railway vehicle design step. The critical speed of the dynamic model depending on the conicity of the wheel is calculated in the stability analysis. The critical speed calculated in this analysis is over 400km/h for the conicity value of 0.15, which is determined on the basis of representative international standard, UIC 518. Also, the lateral and vertical accelerations at several points of the same dynamic model are calculated for the safety analysis. In the simulation, the dynamic model runs at the test speed of 440km/h, which is determined considering a maximum target speed, and the total driving distance is 30km. And those estimated values are less than the allowed maximum acceleration values of UIC 518.

A Study On the Development of Multi-Purpose Measurement System for the Evaluation of Ship Dynamic Motion (선체 운동 평가를 위한 다기능 계측시스템 개발에 관한 연구)

  • kim Chol-seong;Jung Chang-hyun;Lee Yun-sok;Kong Gil-young;Lee Chung-ro;Cho Ik-soon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.69-74
    • /
    • 2005
  • In order to evaluate the safety of navigation at sea and the safety of mooring on berthing, it is necessary that the wave and wind induced ship dynamic motion should be measured in real time domain for the validity of theoretical evaluation method sum as sea-keeping performance and safety of mooring. In this paper, the basic design of sensors is discussed and some system configurations were shown. The developed system mainly consists of 4 kind of sensors sum as three dimensional accelerator, two dimensional tilt sensor, two displacement sensors and azimuth sensor. Using this measuring system(MMS), it can be obtained the 6 degrees of freedom of ship dynamic motions at sea and on berthing sum as rolling, pitching, yawing, swaying, heaving, surging under the certain external forces.

  • PDF

Study on Dynamic Characteristics and Safety of Steel Box Railway Bridge (강상형 철도교의 동특성 및 안정성 연구)

  • Choi, Kwon-Young;Yun, Ji-Hong;Kwon, Ku-Sung;Chung, Won-Seok
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1526-1532
    • /
    • 2011
  • Railway bridges are highly susceptible to resonance due to the equidistant axle load with constant speed of train. Thus, it is necessary to verify dynamic characteristics and quantities against dynamic guidelines. Recently, many newly developed bridge systems have been developed for medium span length between 30m and 40m. However, less variety of bridge systems are available for span length between 45m and 50m. Steel box girder is considered as an alternative for span length between 45m and 50m. This study is to investigate the dynamic properties and safety of steel box railway bridge. Modal properties are extracted and moving load analyses are performed using mode superposition method. The results are then compared to various standards.

  • PDF

UNSTEADY STAGING FLOW ANALYSIS USING MOVING GRID SYSTEM (움직이는 격자를 이용한 비정상 단분리 유동해석)

  • Kwon K. B.;Yoon Y. H.;Hong S. K.
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.43-47
    • /
    • 2005
  • In this study, the numerical and dynamic simulation on staging problem including forward jet mechanism is conducted. The forward jet plays a vital role in staging, which jets out from aftbody. This staging environment needs full dynamic characteristics study and flow analysis for securing staging safety. Present study performs dynamic simulation of forebody and aftbody with flow analysis using the Chimera grid scheme which is usually used for moving body simulations. As a result, the separation mechanism using forward jet well work in staging for given initial conditions and reverse thrust, chamber pressure variation from experiments. Furthermore, it is found that the technique using forward jets for staging is excellent for securing the separation safety.

Dynamic Behavior of a Long-Span Bridge Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 장대교량의 동적 거동)

  • Lim, Che-Min;Park, Jang-Ho;Shin, Yung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.2
    • /
    • pp.119-124
    • /
    • 2004
  • The effect of soil-structure interaction becomes important in the design of civil structures such as long-span bridges, which are constructed in the site composed of soft soil. Many methodologies have been developed to account for the proper consideration of soil-structure interaction effect. However, it is difficult to estimate soil-structure interaction effect accurately becaused of many uncertainties. This paper presents the results of study on soil-structure interaction and dynamic response of a long-span bridge designed in the site composed of soft soil. The effect of the soft soil was evaluated by the use of computer program SASSI and a long-span bridge structure was modeled by finite elements. Dynamic response characteristics of a long-span bridge considering soil-structure interaction wereinvestigated.

A study on the fracture toughness of dynamic interlaminar for CFRP composite laminates (선진복합재료 적층판의 동적 층간 파괴 인성평가)

  • 김지훈;김영남;양인영;심재기
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.41-48
    • /
    • 1998
  • In this paper, an investigation was performed on the dynamic interlaminar fracture toughness of CFRP(carbon fiber reinforcement plastics) composite laminates. Composite laminates used in this experimentation are CF/EPOXY and CF/PEEK laminated plates. In the experiments, Split Hopkinson's Bar(SHPE) test was applied to dynamic and notched flexure test. The mode Ⅱ fracture toughness of each unidirectional CFRP was estimated by the analyzed deflection of the specimen and J-integral with the measured impulsive load and reactions at the supported points. As an experimental result, the vibration amplitude of CF/PEEK laminates appear more than that of CF/EPOXY laminates for the J-integral and displacement velocity at a measuring point. Also, it is thought that the dynamic fracture toughness of two kind specimens(CFRP/EPOXY and CF/PEEK) with the in crease of displacement velocity becomes a little greater at a measuring point within the range of measurement.

  • PDF

Numerical Simulation of Dynamic Behaviour of a Gauge-changeable Freight Wagon (궤간가변화차의 동특성 수치해석)

  • Jang Seung-Ho;Lee Il-Seung
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.4 s.35
    • /
    • pp.461-466
    • /
    • 2006
  • In order to transport cargo rapidly and safely from the trans-Korean railway to the trans-Siberian railway having a different gauge, a gauge-changeable freight wagon can be used. Because the wagon is expected to run in South Korea, North Korea and Russia, it should have good dynamic performance in these railways. In this paper, the dynamic characteristics of a gauge-changeable freight wagon was analyzed numerically using ADAMS/Rail in each condition of the railways having different gauges and rail profiles. The wagon makes use of load sensitive friction damping and has highly nonlinear behaviour, which is modeled in detail as the full nonlinear dynamic model. It is shown that the running behaviour of the wagon is sensitive to changes in the rail gauge and profiles, however the assessment quantities from the point of view of safety, track fatigue and running behaviour are less than the limit valves.