• Title/Summary/Keyword: Dynamic Robust Design

Search Result 335, Processing Time 0.028 seconds

Robust optimum design of MTMD for control of footbridges subjected to human-induced vibrations via the CIOA

  • Leticia Fleck Fadel Miguel;Otavio Augusto Peter de Souza
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.647-661
    • /
    • 2023
  • It is recognized that the installation of energy dissipation devices, such as the tuned mass damper (TMD), decreases the dynamic response of structures, however, the best parameters of each device persist hard to determine. Unlike many works that perform only a deterministic optimization, this work proposes a complete methodology to minimize the dynamic response of footbridges by optimizing the parameters of multiple tuned mass dampers (MTMD) taking into account uncertainties present in the parameters of the structure and also of the human excitation. For application purposes, a steel footbridge, based on a real structure, is studied. Three different scenarios for the MTMD are simulated. The proposed robust optimization problem is solved via the Circle-Inspired Optimization Algorithm (CIOA), a novel and efficient metaheuristic algorithm recently developed by the authors. The objective function is to minimize the mean maximum vertical displacement of the footbridge, whereas the design variables are the stiffness and damping constants of the MTMD. The results showed the excellent capacity of the proposed methodology, reducing the mean maximum vertical displacement by more than 36% and in a computational time about 9% less than using a classical genetic algorithm. The results obtained by the proposed methodology are also compared with results obtained through traditional TMD design methods, showing again the best performance of the proposed optimization method. Finally, an analysis of the maximum vertical acceleration showed a reduction of more than 91% for the three scenarios, leading the footbridge to acceleration values below the recommended comfort limits. Hence, the proposed methodology could be employed to optimize MTMD, improving the design of footbridges.

A Continuous Robust Control Strategy for the Active Aeroelastic Vibration Suppression of Supersonic Lifting Surfaces

  • Zhang, K.;Wang, Z.;Behal, A.;Marzocca, P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.210-220
    • /
    • 2012
  • The model-free control of aeroelastic vibrations of a non-linear 2-D wing-flap system operating in supersonic flight speed regimes is discussed in this paper. A novel continuous robust controller design yields asymptotically stable vibration suppression in both the pitching and plunging degrees of freedom using the flap deflection as a control input. The controller also ensures that all system states remain bounded at all times during closed-loop operation. A Lyapunov method is used to obtain the global asymptotic stability result. The unsteady aerodynamic load is considered by resourcing to the non-linear Piston Theory Aerodynamics (PTA) modified to account for the effect of the flap deflection. Simulation results demonstrate the performance of the robust control strategy in suppressing dynamic aeroelastic instabilities, such as non-linear flutter and limit cycle oscillations.

Robust Vibration Control for a Building with Parameter Uncertainty (파라미터 불확실성을 고려한 건물의 견실 진동 제어)

  • 최재원;김신종;이만형
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.575-583
    • /
    • 2000
  • In this paper, we design a vibration control system that includes a 3-D.O.F. mass-spring-damper structure for the analytical model of a building that is excited at the base of this structure by an external dynamic force, and one Active Mass Damper(AMD) on the top of this structure to generate control forces fro attenuation of the structural response. Two robust controllers based on $\mu$-synthesis and H$\infty$ optimal control are designed for the structural system to show that the performance of a control system can be degraded by some parameter uncertainties such as mass, stiffness coefficients, and/or damping coefficients. The performance of the two controllers are compared in terms of nominal performance, robust stability and robust performance by simulations.

  • PDF

Robust Controllers for Large Space Structures Using an SPR Filter and Displacement Feedback (변위ㆍ정보와 SPR 필터를 이용한 대형 우주 구조물의 강인 제어기에 관한 연구)

  • 손영익;심형보;조남훈
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.9
    • /
    • pp.520-525
    • /
    • 2003
  • A robust controller for large space structures(LSS) is studied from passivity point of view. While velocity sensors are commonly used for proportional-derivative (PD) control law to stabilize large space structures, if the structure can be controlled without velocity measurements, it is desirable against the failure of velocity sensors and for the cost reduction of the sensing system. In a recent result a dynamic output feedback control law has been provided using only displacement measurements. This paper presents a passivity-based controller design method and provides an alternative stability analysis tool for the previous displacement feedback robust control law. The closed-loop system can be viewed as a feedback interconnection of a passivated large space structure (LSS) and a strictly positive real (SPR) system.

Experimental modeling and Robust Control of an Industrial Overhead Crane

  • Park, B.S.;T.G. Song;Lee, J.Y.;D.H. Hong;J.S. Yoon;E.S. Kang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.45.2-45
    • /
    • 2001
  • In case that the perfect model following conditions are not satisfied in the system, a perfect model-following controller is difficult to apply to the system. To deal with this problem, in this paper, a robust imperfect stable model-following controller is designed by combining time delay controller and sliding mode controller based on the concept of two degrees of freedom(2-DOF) controller design method. The experimental dynamic modeling of the commercial overhead crane with capacity of two tons is carried out. To remove the noise of the measuring signals from the swing angle measurement device and estimate the state of the swing angles of the transported object at each time instant, realtime tracker is designed using Kalman filter. The performance of the designed robust controller is tested through the commercial overhead. The experimental results show that the designed controller is robust and applicable to real systems.

  • PDF

Advanced controller design for AUV based on adaptive dynamic programming

  • Chen, Tim;Khurram, Safiullahand;Zoungrana, Joelli;Pandey, Lallit;Chen, J.C.Y.
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.233-260
    • /
    • 2020
  • The main purpose to introduce model based controller in proposed control technique is to provide better and fast learning of the floating dynamics by means of fuzzy logic controller and also cancelling effect of nonlinear terms of the system. An iterative adaptive dynamic programming algorithm is proposed to deal with the optimal trajectory-tracking control problems for autonomous underwater vehicle (AUV). The optimal tracking control problem is converted into an optimal regulation problem by system transformation. Then the optimal regulation problem is solved by the policy iteration adaptive dynamic programming algorithm. Finally, simulation example is given to show the performance of the iterative adaptive dynamic programming algorithm.

Design of Robust Voltage Controller for Single-phase UPS Inverter (단상 UPS 인버터의 강인한 전압제어기 설계)

  • Ku, Dae-Kwan;Ji, Jun-Keun;Cha, Guee-Soo;Moon, Jun-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.317-325
    • /
    • 2011
  • In this paper a robust voltage controller for a single-phase UPS inverter is newly presented. The voltage controller is designed using ${\mu}$-based robust control scheme to simultaneously guarantee robust stability and robust tracking performance in the presence of load variations. Firstly the robust performance of the resulting controller is theoretically confirmed via ${\mu}$-analysis. Then simulations and experiments for the single-phase inverter system with linear and nonlinear loads demonstrate feasibility of the proposed control method providing improved performance - good regulation and fast dynamic response.

Robust Finite-Time Stabilization for an Uncertain Nonlinear System (불확실한 비선형 시스템에 대한 강인 유한 시간 안정화)

  • Seo, Sang-Bo;Shin, Hyung-Bo;Seo, Jin-Heon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.2
    • /
    • pp.7-14
    • /
    • 2009
  • In this paper we consider the problem of global finite-time stabilization for a class of uncertain nonlinear systems which include uncertainties. The uncertainties are time-varying disturbances or parameters belong to a known compact set. The proposed design method is based on backstepping and dynamic exponent scaling using an augmented dynamics, from which, a dynamic smooth feedback controller is derived. The finite-time stability of the closed-loop system and boundedness of the controller are preyed by the finite-time Lyapunov stability theory and a new notion 'degree indicator'.

Dynamic Analysis of a Nano Imprinting Stage Using CAE (CAE를 이용한 나노 임프린트 스테이지의 동적 거동해석)

  • Lee, Kang-Wook;Lee, Min-Gyu;Lee, Jae-Woo;Lim, Si-Hyung;Shin, Dong-Hoon;Jang, Si-Youl;Jeong, Jae-Il;Yim, Hong-Jae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.211-217
    • /
    • 2007
  • A nano-imprinting stage has been widely used in various fields of nanotechnology. In this study, an analysis method of a nano-imprinting stage machine using FEM and flexible multi-body kinematics and dynamics has been presented. We have developed a virtual imprinting machine to evaluate the prototype design in the early design stage. The simulation using CAE for the imprinting machine is not only to analyze static and dynamic characteristics of the machine but also to determine design parameters of the components for the imprinting machine, such as dimensions and specifications of actuators and sensors. Structural components as the upper plate, the rotator, the shaft and the translator have been modeled with finite elements to analyze flexibility effects during the precision stage motion. In this paper flexible multi-body dynamic simulation is executed to support robust design of the precision stage mechanism. In addition, we made the 4-axis stage model to compare the dynamic behavior with that of 3-axis stage model.

Stabilization and trajectory control of the flexible manipulator with time-varying arm length

  • Park, Chang-Yong;Ono, Toshiro;Sung, Yulwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.20-23
    • /
    • 1996
  • This paper deals with the flexible manipulator with rotational and translational degrees of freedom, which has an arm of time-varying length with the prismatic joint. The tracking control problem of the flexible manipulator is considered. First we design the controller of the 2-type robust servo system based on the finite horizon optimal control theory for the trajectory planned as a discontinuous velocity. Next, to reduce the tracking error, we use the method of the dynamic programming and of modifying the reference trajectory in time coordinate. The simulation results show that the dynamic modeling is adequate and that the asymptotic stabilization of the flexible manipulator is preserved in spite of nonlinear terms. The PTP control error has been reduced to zero completely, and the trajectory tracking errors are reduced sufficiently by the proposed control method.

  • PDF