• Title/Summary/Keyword: Dynamic Robust Design

Search Result 335, Processing Time 0.038 seconds

Stochastic intelligent GA controller design for active TMD shear building

  • Chen, Z.Y.;Peng, Sheng-Hsiang;Wang, Ruei-Yuan;Meng, Yahui;Fu, Qiuli;Chen, Timothy
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.51-57
    • /
    • 2022
  • The problem of optimal stochastic GA control of the system with uncertain parameters and unsure noise covariates is studied. First, without knowing the explicit form of the dynamic system, the open-loop determinism problem with path optimization is solved. Next, Gaussian linear quadratic controllers (LQG) are designed for linear systems that depend on the nominal path. A robust genetic neural network (NN) fuzzy controller is synthesized, which consists of a Kalman filter and an optimal controller to assure the asymptotic stability of the discrete control system. A simulation is performed to prove the suitability and performance of the recommended algorithm. The results indicated that the recommended method is a feasible method to improve the performance of active tuned mass damper (ATMD) shear buildings under random earthquake disturbances.

Design the Autopilot System of using Fuzzy Algoritim

  • Kim, Young-Hwi;Bae, Gyu-Han;Park, Jae-Hyung;Kang, Sin-Chool;Lee, Ihn-Yong;Lim, Young-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.296-300
    • /
    • 2003
  • The autopilot system targets decreasing labor, working environment improvement, service safety security and elevation of service efficiency. Ultimate purpose is minimizing number of crew for guarantee economical efficiency of shipping service. Recently, being achieving research about Course Keeping Control, Track Keeping Control, Roll-Rudder Stabilization. Dynamic Ship Positioning and Automatic Mooring Control etc. which compensate nonlinear characteristic using optimizing control technique. And application research is progressing using real ship on actual field. Relation of Rudder angle which adjusted by Steering Machine and ship-heading angle are non-linear. And Load Condition of ship as non-linear element that influence to Parameter of ship. Also, because the speed of a current and direction of waves, velocity and quantity of wind etc. that is disturbance act in non-linear from, become factor who make serv ice of shipping painfully. Therefore, service system of shipping requires robust control algorithm that can overcome nonlinearity. In this paper, Using fuzzy algorithm ,Design autopilot system of ship that could overcome the non-linear factor of ship and disturbance and examined result through simulation.

  • PDF

A FUZZY LOGIC CONTROLLER DESIGN FOR VEHICLE ABS WITH A ON-LINE OPTIMIZED TARGET WHEEL SLIP RATIO

  • Yu, F.;Feng, J.-Z.;Li, J.
    • International Journal of Automotive Technology
    • /
    • v.3 no.4
    • /
    • pp.165-170
    • /
    • 2002
  • For a vehicle Anti-lock Braking System (ABS), the control target is to maintain friction coefficients within maximum range to ensure minimum stopping distance and vehicle stability. But in order to achieve a directionally stable maneuver, tire side forces must be considered along with the braking friction. Focusing on combined braking and turning operation conditions, this paper presents a new control scheme for an ABS controller design, which calculates optimal target wheel slip ratio on-line based on vehicle dynamic states and prevailing road condition. A fuzzy logic approach is applied to maintain the optimal target slip ratio so that the best compromise between braking deceleration, stopping distance and direction stability performances can be obtained for the vehicle. The scheme is implemented using an 8-DOF nonlinear vehicle model and simulation tests were carried out in different conditions. The simulation results show that the proposed scheme is robust and effective. Compared with a fixed-slip ratio scheme, the stopping distance can be decreased with satisfactory directional control performance meanwhile.

A Study on the Meter-Out and Meter-In Speed Control Characteristics in Pneumatic Cushion Cylinders (공기압 쿠션 실린더의 미터아웃/미터인 속도제어 특성에 관한 연구)

  • Kim, Do-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Pneumatic cylinders are widely used to actuators in automatic equipments because they are relatively inexpensive, simple to install and maintain, offer robust design and operation, are available in a wide range of standard sizes and design alternatives. This paper presents a comparative study among the dynamic characteristics of meter-out and meter-in speed control of pneumatic cushion cylinders with a relief valve type cushion mechanism. Because of the nonlinear differential equations and a requirement for simultaneous iterative solution in a mathematical model of a double acting pneumatic cushion cylinder, a computer simulation is carried out to investigate pressure, temperature, mass flow rate in cushion chamber and displacement and velocity time histories of piston under various operating conditions. It is found that the piston velocity and pressure response in meter-in speed control are more oscillatory than with meter-out those when pneumatic cushion cylinders are driven at a high-speed. In meter-out speed control, the effective area of the flow control valve is larger than that of meter-in, and the supply pressure has to be much higher than the pressure required to move the load because it has also to overcome the back pressure in cushion chamber.

Implementation of a pole-placement self-tuning adaptive controller for SCARA robot using TMS320C5X chip (TMS320C5X칩을 사용한 스카라 로봇의 극점배치 자기동조 적응제어기의 실현)

  • Bae, Gil-Ho;Han, Sung-Hyun;Lee, Min-Chul;Son, Kwon;Lee, Jang-Myung;Lee, Man-Hyung;Kim, Sung-Kwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.61-64
    • /
    • 1996
  • This paper presents a new approach to the design of self-tuning adaptive control system that is robust to the changing dynamic configuration as well as to the load variation factors using Digital signal processors for robot manipulators. TMS32OC50 is used in implementing real-time adaptive control algorithms to provide advanced performance for robot manipulator. In this paper, an adaptive control scheme is proposed in order to design the pole-placement self-tuning controller which can reject the offset due to any load disturbance without a detailed description of robot dynamics. Parameters of discrete-time difference model are estimated by the recursive least-square identification algorithm, and controller parameters are determined by the pole-placement method. Performance of self-tuning adaptive controller is illustrated by the simulation and experiment for a SCARA robot.

  • PDF

A Study on DC Motor Control Using Sliding Mode Control (슬라이딩 모드를 이용한 DC 모터 제어에 관한 연구)

  • Yoon, Seong-Sik;Kim, Min-Chan;Park, Seung-Kyu;Ahn, Ho-Gyun;Kim, Sung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1679-1680
    • /
    • 2008
  • DC motor has been widely used in industrial applications, because the performance is excellent on the speed and position system. However, when a system has parameter uncertainty, it is very difficult to guarantee its performance. Sliding mode control is robust for parameter uncertainty. However conventional sliding mode control can not have the properties of PID controller because its sliding surface has lower order dynamics than the original system. In this paper the sliding surface design method is proposed by using virtual state for DC motor speed control. Its design is based on the augmented system whose dynamics have one higher order than that of the original system. As a result, in spite of the parameter uncertainty, the proposed sliding surface can have the same dynamic of nominal system controlled by PID controller. And the reaching phase is removed by setting an initial state which makes the initial sliding surface equal to zero.

  • PDF

Mixed $H_{2}/H_{\infty}$ Controller Design for Descriptor Systems (디스크립터 시스템을 위한 혼합 $H_{2}/H_{\infty}$제어기의 설계)

  • Choe, Yeon-Wook
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.7
    • /
    • pp.483-490
    • /
    • 2004
  • The descriptor system model has a high ability in representing dynamical systems. It can preserve physical parameters in the coefficient matrices, and describe the dynamic part, static part, and even the improper part of the system in the same form. The design of mixed $H_{2}/H_{\infty}$ controllers for linear time-invariant descriptor systems is considered in this paper. Firstly, an $H_2$ and $H_{\infty}$ synthesis problems fur a descriptor system are presented separately in terms of linear matrix inequalities (LMIs) based on the bounded real lemma. Then, we show that the existence of a mixed $H_2/H_{\infty}$ controller by which the $H_2$ norm of the second channel is minimized while keeping the $H_2$ norm bound of the first channel less than ${\gamma}$, is reduced to the linear objective minimization problem. The class of desired controllers that are assumed to have the same structure as the plant is parameterized by using the linearizing change of variables.

Performance of tuned mass dampers against near-field earthquakes

  • Matta, E.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.5
    • /
    • pp.621-642
    • /
    • 2011
  • Passive tuned mass dampers (TMDs) efficiently suppress vibrations induced by quasi-stationary dynamic inputs, such as winds, sea waves or traffic loads, but may prove of little use against pulse-like excitations, such as near-field (NF) ground motions. The extent of such impairment is however controversial, partly due to the different evaluation criteria adopted within the literature, partly to the limited number of seismic records used in most investigations. In this study, three classical techniques and two new variants for designing a TMD on an SDOF structure are tested under 338 NF records from the PEER NGA database, including 156 records with forward-directivity features. Percentile response reduction spectra are introduced to statistically assess TMD performance, and TMD robustness is verified through Monte Carlo simulations. The methodology is extended to a variety of MDOF bending-type and shear-type frames, and simulated on a case study building structure recently constructed in Central Italy.Results offer an interesting insight into the performance of TMDs against NF earthquakes, ultimately showing that, if properly designed and sufficiently massive, TMDs are effective and robust even in the face of pulse-like ground motions. The two newly proposed design techniques are shown to generally outperform the classical ones.

Vibration Analysis of Washing Machine according to Unbalanced Mass during Dehydration (세탁기 탈수 동작 시 불평형 질량에 따른 진동 특성 분석)

  • Lee, Dae-Kyung;Jeong, Ji-Su;Sohn, Jeong-Hyun;Kim, Chan-Jung;Park, Jin-Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • In this study, vibration analysis of washing machine dehydration was carried out using laser sensors. The suspension of the washing machine was attached to a jig developed for this study. In addition, 10 laser sensors were attached to the jig. The channels of each laser sensor are composed of five channels: front, rear, left, right, and upper. Data acquisition equipment was used to obtain sensor data. The measured data were processed using signal processing, and interpolation of the data was performed using MATLAB with robust interpolation. Vibration analysis according to unbalanced mass and sensor attachment points was carried out.

Mooring Winch Control System Design Based on Frequency Dependent LQR Control Approach (주파수 의존형 LQR 설계법에 의한 무어링 윈치 제어시스템 설계)

  • Goo, Ja-Sam;Kim, Young-Bok
    • Journal of Navigation and Port Research
    • /
    • v.38 no.1
    • /
    • pp.29-37
    • /
    • 2014
  • In this paper, the author consider control system design problem of the surface vessel where any types of floating units are included. To keep their motion/position, the Dynamic Positioning System(DPS) is equipped in. Even though sometimes the thrust systems are installed on them, in general the mooring winch system with the rope/wire is used. Therefore, in this paper we consider a single type mooring winch control problem to keep the vessel's position. For this, we introduce an easy and useful control approach which is based on LQ control theory. In this approach, we introduce the frequency dependent weighting matrices which give the system filters to shape frequency characteristics of the controlled system and guarantee the control performance. Based on this, we will show that the proposed approach works well.