• Title/Summary/Keyword: Dynamic Relaxation Method

Search Result 81, Processing Time 0.024 seconds

Evaluation of the status of subgrade of high speed railway using HWAW method (HWAW방법을 이용한 고속철도 하부 노반 평가)

  • Park, Hyung-Choon;Park, Jin-O;Jin, Nam-Hui;Noh, Hee-Kwan;Bae, Hyun-Jung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.208-212
    • /
    • 2010
  • The high-speed railway consists of tracks, gravel ballast and subgrade, and the dynamic load is passed to subgrade through track and gravel ballast. The relaxation condition of the gravel ballast is able to be evaluate relatively and to be repaired through a continuous management, but it is difficult to evaluate the condition of subgrade, which is final part of supporting dynamic load and to repair it when made a problem. The gravel ballast and subgrade are evaluated by determining shear wave velocity. To evaluate ballast and subgrade, a good method to determine shear wave velocity is a non-destructive experiment such as surface wave tests providing a prompt experiment because an experiment in railway has a lot of tests which are carried out following railway directions and needs to prevent damage of the system. In general, a railway has limitation of an experimental space by narrow width, sleeper and etc., and background noise by a reflector exists. The existing surface wave tests need a minimum space, and it is difficult to get a reliable test results on account of background noise effect. Therefore, it is difficult or impossible to apply to existing surface wave test of subgrade and ballast. In this study, the HWAW method is applied to determine a shear wave velocity profile of the underground. The HWAW method is the experiment which is able to be carried out on a narrow space, and it determines share wave velocity of a site by measuring the wave from surface sources on the same spot. In addition, it removes effects of background noise accordingly to a signal processing using harmonic wavelet transforms, so it is useful to evaluate subgrade of a high-speed railway in the narrow space and the situation of background noise. In order to check an application of the HWAW method, an experiment is carried out on a high-speed railway field and a test result is compared to boring results.

  • PDF

Numerical study on the rate-dependent behavior of geogrid reinforced sand retaining walls

  • Li, Fulin;Ma, Tianran;Yang, Yugui
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.195-205
    • /
    • 2021
  • Time effect on the deformation and strength characteristics of geogrid reinforced sand retaining wall has become an important issue in geotechnical and transportation engineering. Three physical model tests on geogrid reinforced sand retaining walls performed under various loading conditions were simulated to study their rate-dependent behaviors, using the presented nonlinear finite element method (FEM) analysis procedure. This FEM was based on the dynamic relaxation method and return mapping scheme, in which the combined effects of the rate-dependent behaviors of both the backfill soil and the geosynthetic reinforcement have been included. The rate-dependent behaviors of sands and geogrids should be attributed to the viscous property of materials, which can be described by the unified three-component elasto-viscoplastic constitutive model. By comparing the FEM simulations and the test results, it can be found that the present FEM was able to be successfully extended to the boundary value problems of geosynthetic reinforced soil retaining walls. The deformation and strength characteristics of the geogrid reinforced sand retaining walls can be well reproduced. Loading rate effect, the trends of jump in footing pressure upon the step-changes in the loading rate, occurred not only on sands and geogrids but also on geogrid reinforced sands retaining walls. The lateral earth pressure distributions against the back of retaining wall, the local tensile force in the geogrid arranged in the retaining wall and the local stresses beneath the footing under various loading conditions can also be predicted well in the FEM simulations.

Quantitative Analysis of Magnetization Transfer by Phase Sensitive Method in Knee Disorder (무릎 이상에 대한 자화전이 위상감각에 의한 정량분석법)

  • Yoon, Moon-Hyun;Sung, Mi-Sook;Yin, Chang-Sik;Lee, Heung-Kyu;Choe, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.98-107
    • /
    • 2006
  • Magnetization Transfer (MT) imaging generates contrast dependent on the phenomenon of magnetization exchange between free water proton and restricted proton in macromolecules. In biological materials in knee, MT or cross-relaxation is commonly modeled using two spin pools identified by their different T2 relaxation times. Two models for cross-relaxation emphasize the role of proton chemical exchange between protons of water and exchangeable protons on macromolecules, as well as through dipole-dipole interaction between the water and macromolecule protons. The most essential tool in medical image manipulation is the ability to adjust the contrast and intensity. Thus, it is desirable to adjust the contrast and intensity of an image interactively in the real time. The proton density (PD) and T2-weighted SE MR images allow the depiction of knee structures and can demonstrate defects and gross morphologic changes. The PD- and T2-weighted images also show the cartilage internal pathology due to the more intermediate signal of the knee joint in these sequences. Suppression of fat extends the dynamic range of tissue contrast, removes chemical shift artifacts, and decreases motion-related ghost artifacts. Like fat saturation, phase sensitive methods are also based on the difference in precession frequencies of water and fat. In this study, phase sensitive methods look at the phase difference that is accumulated in time as a result of Larmor frequency differences rather than using this difference directly. Although how MT work was given with clinical evidence that leads to quantitative model for MT in tissues, the mathematical formalism used to describe the MT effect applies to explaining to evaluate knee disorder, such as anterior cruciate ligament (ACL) tear and meniscal tear. Calculation of the effect of the effect of the MT saturation is given in the magnetization transfer ratio (MTR) which is a quantitative measure of the relative decrease in signal intensity due to the MT pulse.

  • PDF

Bulk Properties of Red Pepper Powder by Drying Method and Variety (품종과 건조방법에 따른 고춧가루의 집단 특성)

  • Kang, Yu-Ri;Lee, Sang-Hoon;Kim, Hyun-Young;Woo, Koan-Sik;Hwang, In-Guk;Hwang, Young;Yoo, Seon-Mi;Kim, Haeng-Ran;Kim, Hae-Young;Lee, Jun-Soo;Jeong, Heon-Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.9
    • /
    • pp.1320-1325
    • /
    • 2012
  • This study investigated the bulk properties of red pepper powders according to drying method and variety. Bulk density, compressive characteristics, irrecoverable work, dynamic angle, and stress relaxation were investigated. Loose bulk density ranged between 0.420 $g/cm^3$ for Cheongyang cultivar and 0.427 $g/cm^3$ for Hanbando cultivar by hot-air drying. The highest tapped bulk density was 0.586 $g/cm^3$ for Hanbando cultivar by far-infrared drying and the lowest value was 0.523 $g/cm^3$ for Hanbando cultivar by sun drying. Hausner ratio reached a maximum value of 1.370 for Hanbando cultivar by far-infrared drying. Compressibility ranged between 0.0016 for Cheongyang cultivar by sun drying and 0.0023 for Hanbando cultivar by far-infrared drying. Compression ratio reached a maximum value of 1.032 for Hanbando cultivar by hot-air drying. Dynamic angle of repose ranged between 37.47 and $42.97^{\circ}$. Irrecoverable work ranged between 76.0 and 81.7%. Relaxation reached a maximum value of 24.31% for Cheongyang cultivar by far-infrared drying.

Cervical stabilization exercise using the Sling system (슬링(Sling) 시스템을 이용한 경부 안정화 운동)

  • Kwon, Jae-Hoak;Cho, Mi-Ju;Park, Min-Chull;Kim, Suhn-Yeop
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.8 no.2
    • /
    • pp.57-71
    • /
    • 2002
  • Cervical pain is a rapid increase that is owing to a flexion-extension whiplash injury, unappropriated posture, chronical repetition injury from abdominal position of head and neck, excessive repeating work, chronical deficiency of excercise. Because of that is bring about muscle unbalance, tightness of cervical extensor muscle, weakness of cervical deep flexor muscles, instability of cervical region and reduction of proprioceptive sensor. Recent the role of muscle is more emphasized for preservation of sine stabilization. And cognition of integrated muscular system, importance for the operation and relation is increased to maintain stability of the motor system and pertinent function. Therefore we are going to introduce the sling exercise and stabilization exercise method for advanced efficient of cervical and upper limb and for the muscle strengthening to importance cervical stabilization through neurological program as control the reaction of cervical stabilization. Sling exercise therapy(SET) concept consists of a system of diagnosis and treatment. The system of diagnosis involves testing the muscle's tolerance through progressive loading in open and close kinetic chains. The SET system contains elements such as relaxation, increasing the range of movement, traction, training the stabilizing musculature, sensory-motor exercises, training in open and close kinetic chains, dynamic training of the mobilizing musculature, cardiovascular exercise, group exercise, personal exercise at home Sensory-motor training is an essential element of the SET concept. The emphasis is on closed kinetic chain exercise on an unstable surface, there by achieving optimum stimulation of the sensory-motor apparatus.

  • PDF

A Development of Explicit Algorithm for Stress-Erection Analysis of STRARCH System (스트라치 시스템의 긴장응력해석을 위한 명시적 해석법의 개발)

  • Lee, Kyoung-Soo;Han, Sang-Eul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.513-520
    • /
    • 2011
  • In this paper, the advanced explicit algorithm is proposed to simulate the stress-erection process analysis of Strarch system. The Strarch(Stressed-Arch) system is a unique and innovative structural system and member prestress comprising prefabricated plane truss frames which are erected by a post-tensioning stress-erection procedure. The flexible bottom chord which have sleeve and gap detail are closed by the reaction force of prestressing tendon. The prestress imposing to the tendon will make the Strarch system to be erected. This post tensioning process is called as "stress-erection process". During the stress-erection process, the plastic rigid body rotation is occurred to the flexible top chord by the excessive amount of plastic strain, and the structural characteristic becomes to be unstable. In this study, the large deformational beam-column element with plastic hinge is used to model the flexible top chord, and the advanced Dynamic Relaxation method(DRM) are applied to the unstable problem of stress-erection process of Strarch system. Finally, the verification of proposed explicit algorithm is evaluated by analysing the stress-erection of real project of Strarch system.

Effects of Kinesio Taping on Craniovertebral Angle and Balance Ability in Subject with Forward Head Posture

  • Jeon, Yong-Jin;Kim, Gyoung-Mo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.8
    • /
    • pp.145-150
    • /
    • 2020
  • Forward head posture is one of the most recognized types of poor head and neck alignment. Poor head and neck alignment posture is a major contributor to compromised balance and neck pain, due to abnormal joint position sense and proprioception. Kinesio taping is an intervention method used clinically for the management of pain. Kinesio taping may produce its effects through pain reduction, stimulation of blood circulation, induction of muscle relaxation which provides correction of joint position, and providing stability to the muscles and joints without limiting the range of motion. Many studies have proved that kinesio taping has positive effects on the reduction of pain and improves alignment, on the other hand, some studies have not found. Kinesio taping may provide immediate pain relief and improved alignment following the application, but there is insufficient evidence to support sustained relief beyond that time and they recommended future studies to examine the benefits of kinesio taping as this would have a greater value in clinical practice. Therefore, this study is to investigate the effects of kinesio taping on the alignment of head posture and dynamic balance ability in people with forward head posture.

Preprocessing Stage of Timing Simulator, TSIM1.0 : Partitioning and Dynamic Waveform Storage Management (Timing Simulator인 TSIM1.0에서의 전처리 과정 : 회로분할과 파형정보처리)

  • Kwon, Oh-Bong;Yoon, Hyun-Ro;Lee, Ki-Jun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.3
    • /
    • pp.153-159
    • /
    • 1989
  • This paper describes the algorithms employed in the preprocessing stage of the timing simulator, TSIM1.0, which is based on the Waveform Relaxation Method (WRM) at the CELL-level. The preprocessing stage in TSIM1.0 (1)partitions a given circuit into DC connected blocks (DCB's) (2) forms strongly connected circuts (SCC's) and (3) orders CELL's Also, the efficient waveform management technique for the WRM is described, which allows the overwriting of the waveform management technique for the WRM is described. which allows the overwriting of the waveform information to save the storage requirements. With TSIM1.0, circuits containing up to 5000 MOSFET's can be analyzed within 1 hour computation time on the IBM PC/AT. The simulation results for several types of MOS digital circuits are given to verify the performance of TSIM1.0.

  • PDF

Geodesic Shape Finding Algorithm for the Pattern Generation of Tension Membrane Structures (막구조물의 재단도를 위한 측지선 형상해석 알고리즘)

  • Lee, Kyung-Soo;Han, Sang-Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.33-42
    • /
    • 2010
  • Patterning with a geodesic line is essential for economical or efficient usage of membrane materialsin fabric tension membrane structural engineering and analysis. The numerical algorithm to determine the geodesic line for membrane structures is generally classified into two. The first algorithm finds a non-linear shape using a fictitious geodesic element with an initial pre-stress, and the other algorithm is the geodesic line cutting or searching algorithm for arbitrarily curved 3D surface shapes. These two algorithms are still being used only for the three-node plane stress membrane element, and not for the four-node element. The lack of a numerical algorithm for geodesic lines with four-node membrane elements is the main reason for the infrequent use of the four-node membrane element in membrane structural engineering and design. In this paper, a modified numerical algorithm is proposed for the generation of a geodesic line that can be applied to three- or four-node elements at the same time. The explicit non-linear static Dynamic Relaxation Method (DRM) was applied to the non-linear geodesic shape-finding analysis by introducing the fictitiously tensioned 'strings' along the desired seams with the three- or four-node membrane element. The proposed algorithm was used for the numerical example for the non-linear geodesic shape-finding and patterning analysis to demonstrate the accuracy and efficiency, and thus, the potential, of the algorithm. The proposed geodesic shape-finding algorithm may improve the applicability of the four-node membrane element for membrane structural engineering and design analysis simultaneously in terms of the shape-finding analysis, the stress analysis, and the patterning analysis.

Development of the model and the hybrid algorithm toy analyzing the dynamic heat conduction in the CPES system (CPFS 내에서 일어나는 동적 열전도 현상을 해석하기 위한 수식 및 혼합알고리즘 개발)

  • Yun Jongpil;Kwon Seong-Pil;Yoon En Sup
    • 한국가스학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.120-125
    • /
    • 2003
  • 본 연구는 원자력 발전소에 있는 방화벽의 케이블 관통부위에 설치된 CPFS(Cable Penetration Fire Stop)시스템 안에서 일어나는 동적열전달 현상을 3 차원으로 나타낼 수 있는 시험시뮬레이터에 사용될 수학적 모델과 수치계산 알고리즘의 개발에 관한 것이다. CPFS 내에서 일어나는 열전도 현상을 나타내는 지배방정식은 주어진 조건들 하에서 포물선형 편미분방정식(Parabolic PDE)으로 나타난다. 문제를 단순화하기 위해 열의 흐름을 두 성분으로 나누었다 즉, 케이블과 평행한 선을 따라서 일어나는 열전도와 벽면과 평행한 평면 위에서 일어나는 열전도로 나누었다. 먼저 선을 따라 일어나는 동적 열전도 현상을 나타내는 PDE를 연속과완화(SOR: Successive Over-Relaxation)를 적용하여 유한한 불연속점들에 대한 연립 상미분방정식(ODE)으로 전환했고, 그 연립방정식은 ODE Solver 를 이용하여 풀 수 있었다. 둘째로, 각 불연속 점에 위치한 평면 위에서 일어나는 열전도를 계산하기 위해서, 유한요소의 합을 근사식으로 이용하여 PDE를 ODE로 전환해서 계산하는 유한요소법(Finite Element Method)이 이용된다. 여기서 시간과 공간의 함수 T(x, y, z, t)인 온도는 각 선의 점들과 각 평면의 요소들에 대해서 일정한 시간간격으로 초기온도와 경계온도를 업데이트하여 계산을 반복한다. 이러한 일련의 계산결과를 바탕으로 CPFS 시스템 내에서의 온도분포의 동적인 변화를 해석한다. 결론적으로 관통하는 케이블이 CPFS 시스템의 온도분포에 매우 중요한 역할을 한다는 것을 알 수 있다. 시뮬레이션 결과는 CPFS 내의 온도분포를 쉽게 이해할 수 있도록 3 차원 그래픽으로 나타냈으며, 상용소프트웨어 FEMLAB 으로 계산한 결과와 비교해서 개발된 모델과 계산 알고리즘의 정당성을 보였다. 맞이하고 있음을 볼 수 있다. 국내광업이 21C 급변하는 산업환경에 적응하여 생존하기 위해서는 각종 첨단산업에서 요구하는 소량 다품종의 원료광물을 적기에 공급 할 수 있는 전문화된 기술력을 하루속히 확보해야 하며, 이를 위해 고품위의 원료광물 확보를 위한 탐사 및 개발을 적극 추진하고 가공기술의 선진화를 위해 선진국과의 기술제휴 등 자원산업 글로벌화 정책이 절실히 요구되고 있음을 알 수 있다. 또한 삶의 질을 향상시키려는 현대인의 가치관에 부합하기 위해서는 각종 소비제품의 원료를 제공하는 광업의 본래 목적 이외에도 자연환경 훼손을 최소화하며 개발 할 수밖에 없는 구조적인 어려움에 직면할 수밖에 없다. 이처럼 국내광업이 안고 있는 여러 가지 난제들을 극복하기 위해서는 업계와 정부가 합심하여 국내광업 육성의 중요성을 재인식하고 새로운 마음가짐으로 관련 정책을 수립 일관성 있게 추진해 나가야 할 것으로 보인다.의 연구 결과를 요약하면 다음과 같다. 첫째, 브랜드 이미지와 서비스 품질과의 관계에서 브랜드이미지는 서비스 품질의 선행변수가 될 수 있음을 증명하였으며 4개 요인의 이미지 중 사풍이미지를 제외한 영업 이미지, 제품 이미지, 마케팅 이미지가 서비스 품질에 영향을 미치고 있음을 알 수 있다. 둘째, 지각된 서비스 품질과 가격 수용성과의 관계에서, 서비스 품질은 최소 가격에 신뢰서비스 요인에서 정의 영향을 미치고 있으나 부가서비스, 환경서비스에서는 역의 영향을 미침을 알수 있고, 최대 가격에 있어서는 욕구서비스 요인은 정의 영향을 미치지만 부가서비스의 경우에는 역의 영향을 미치고 있음을 알 수 있다. 셋째, 서비스품질과 재 방문 의도와의 관계에 있어서 서비스품질은 재 방문 의도에 영향을 미침을 알 수 있다. 따라서 브랜드 이미지는 서비스품질의 선행변수가 될 수 있으며, 서비스품질은 가격 수용성과 재방문 의도에 영향을 미치고 있음을 알 수

  • PDF