• Title/Summary/Keyword: Dynamic Property

Search Result 902, Processing Time 0.028 seconds

Study on the talc dispersion and rheological properties of PP/talc compound (PP/talc 컴파운드의 talc 분산성 및 유변학적 특성 연구)

  • You, Young-Chul;Kim, Youn-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4261-4266
    • /
    • 2011
  • Polypropylene (PP)/talc compounds with talc content of 20wt% were fabricated by master-batch (MB) and direct compounding method using injection molding. The MB was prepared by mini compounder at $200^{\circ}C$ and the content of talc was 50wt%. The talc dispersion of the PP/talc compound was investigated by SEM-EDS. The talc was well dispersed within PP matrix in case of the MB-PP compound using MB. The rheological properties of the PP/talc compounds were measured by dynamic Rheometer. The MB-PP compound indicates higher shear thinning and elastic property than direct compound. The disperion of talc was certified by G'-G" plot, and Van Gurp-Palmen analysis was applied in order to certify an increase in elasticity.

An Extraction Method of Glomerulus Region from Renal Tissue Image (신장조직 영상에서 사구체 영역의 추출법)

  • Kim, Eung-Kyeu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.2
    • /
    • pp.70-76
    • /
    • 2012
  • In this paper, an automatic extraction method of glomerulus region from human renal tissue image is presented. The important information reflecting the state of kidneys richly included in the glomeruli, so it should be the first step to extract the glomerulus region from the renal tissue image for the further quantitative analysis of the renal condition. Especially, there is no clear difference between the glomerulus and other tissues, so the glomerulus region can not be easily extracted from its background by the existing segmentation methods. The outer edge of a glomerulus region is regarded as a common property for the regions of this kind ; a two- dimensional Gaussian distribution is used to convolve with an original image first and then the image is thresholded at this blurred image ; a closed curve corresponding to the outer edge can be obtained by usual pattern processing skills like thinning, branch-cutting, hole-filling etc., Finally, the glomerulus region can be obtained by extracting the area in the original image surrounded by the closed curve. The glomerulus regions are correctly extracted by 85 percentages and experimental results show the proposed method is effective.

Damage Estimation Method for Wind Turbine Tower Using Modal Properties (모드특성을 이용한 풍력발전기 타워의 손상추정기법)

  • Lee, Jong Won;Bang, Je Sung;Kim, Sang Ryul;Han, Jeong Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.87-94
    • /
    • 2012
  • A damage estimation method of wind turbine tower using natural frequency and mode shape is presented for effective condition monitoring. Dynamic analysis for a wind turbine was carried out to obtain the response of tower from which modal properties were identified. A neural network was learned based on training patterns generated by the changes of natural frequency and mode shape due to various damages. The changes of modal property were calculated using a program for modal parameter estimation. Damage locations and severities could be successfully estimated for 10 damage cases including multi-damage cases using the trained neural network. The damage severities for very small damages generally tends to be slightly under-estimated however, the identified damage locations agreed reasonably well with the accurate locations. Enhancement of the estimation result for very small damage and verification of the proposed method through experiment will be carried out by further study.

The Implementation of a Battery Simulator with Atypical Characteristics of Batteries (비정형적 배터리 특성을 포함한 배터리 시뮬레이터의 구현)

  • Lee, Dong Sung;Lee, Seong-Won
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.11
    • /
    • pp.419-426
    • /
    • 2014
  • The recent trend of performance increase in the smart mobile devices demands more power consumption and lower batter life time. Among three battery models of mathematical model, electrochemical model and electric model, the Thevenin's equivalent circuit with non-linear function model of SOC in the electrical model is widely used. However, the OCV results have only limited accuracy because of the characteristic shift caused by temperature and age and atypical impedance property that cannot expressed by electrical components. In this paper, the new battery model that improves the accuracy of the existing models is proposed. In the proposed simulator the mathematical model for SOC characteristic is improved and the adjustment for the temperature, the age of battery and atypical electrical characteristics. In the experimental results of predicting of the battery in the static and dynamic state, the proposed simulator shows improved MSE comparing to the results of the existing methods.

Effect of Gamma Ray Irradiation on the Mechanical and Thermal Properties of MWNTs Reinforced Epoxy Resins

  • Shin, Bum Sik;Shin, Jin Wook;Jeun, Joon Pyo;Kim, Hyun Bin;Oh, Seung Hwan;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.2
    • /
    • pp.137-143
    • /
    • 2011
  • Epoxy resins are widely used as high performance thermosets in many industrial applications, such as coatings, adhesives and composites. Recently, a lot of research has been carried out in order to improve their mechanical properties and thermal stability in various fields. Carbon nanotubes possess high physical and mechanical properties that are considered to be ideal reinforcing materials in composites. CNT-reinforced epoxy system hold the promise of delivering superior composite materials with their high strength, light weight and multi functional features. Therefore, this study used multi-walled carbon nanotubes (MWNT) and gamma rays to improve the mechanical and thermal properties of epoxy. The diglycidyl ether of bisphenol A (DGEBA) as epoxy resins were cured by gamma ray irradiation with well-dispersed MWNTs as a reinforcing agent and triarylsulfonium hexafluoroantimonate (TASHFA) as an initiator. The flexural modulus was measured by UTM (universal testing machine). At this point, the flexural modulus factor exhibits an upper limit at 0.1 wt% MWNT. The thermal properties had improved by increasing the content of MWNT in the result of TGA (thermogravimetric analysis). However, they were decreased with increasing the radiation dose. The change of glass transition temperature by the radiation dose was characterized by DMA (dynamic mechanical analysis).

A Property of Seismic Response with Log-normal Distribution at SDOF Structure (단자유도계 구조물의 로그정규분포 지진응답 특성)

  • Chung, Youn-In;Kim, Koon-Chan;Chey, Min-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.303-308
    • /
    • 2019
  • This study suggests a method for deriving earthquake response based on log-normal distribution in order to obtain realistic and reliable probability and statistical seismic response of structures. The development of three earthquake suites were presented, with a brief description of 2%, 10%, and 50% in 50 years probability of exceedance according the USGS Los Angeles probabilistic seismic hazard maps. In order to analyze the basic dynamic behavior, a Single-Degree-of-Freedom (SDOF) structure was selected and the seismic response spectrum representing the response of each natural period was plotted. Overall, the mean response values presented through the log-normal distribution is lower than the standard normal distribution. Thus, it is considered that the former method can be provided as the effective cost on performance-based seismic design more than the latter one.

Analysis Method of Ice Load and Ship Structural Response due to Collision of Ice Bergy Bit and Level Ice (유빙 및 평탄빙의 충돌에 의한 빙하중과 선체구조응답 해석기법)

  • Nho, In Sik;Lee, Jae-Man;Oh, Young-Taek;Kim, Sung-Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.85-91
    • /
    • 2016
  • The most important factor in the structural design of ships and offshore structures operating in arctic region is ice load, which results from ice-structure interaction during the ice collision process. The mechanical properties of ice related to strength and failure, however, show very complicated aspect varying with temperature, volume fraction of brine, grain size, strain rate and etc. So it is nearly impossible to establish a perfect material model of ice satisfying all the mechanical characteristics completely. Therefore, in general, ice collision analysis was carried out by relatively simple material models considering only specific aspects of mechanical characteristics of ice and it would be the most significant cause of inevitable errors in the analysis. Especially, it is well-known that the most distinctive mechanical property of ice is high dependency on strain rate. Ice shows brittle attribute in higher strain rate while it becomes ductile in lower strain rate range. In this study, the simulation method of ice collision to ship hull using the nonlinear dynamic FE analysis was dealt with. To consider the strain rate effects of ice during ice-structural interaction, strain rate dependent constitutive model in which yield stress and hardening behaviors vary with strain rate was adopted. To reduce the huge amount of computing time, the modeling range of ice and ship structure were restricted to the confined region of interest. Under the various scenario of ice-ship hull collision, the structural behavior of hull panels and failure modes of ice were examined by nonlinear FE analysis technique.

Effect of Thermal Grease on Thermal Conductivity for Mild Steel and Stainless Steel by ASTM D5470 (ASTM D5470 방법으로 연강과 스테인리스강의 열전도도 측정시 열그리스의 영향)

  • Cho, Young-Wook;Hahn, Byung-Dong;Lee, Ju Ho;Park, Sung Hyuk;Baeg, Ju-Hwan;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.29 no.7
    • /
    • pp.443-450
    • /
    • 2019
  • Thermal management is a critical issue for the development of high-performance electronic devices. In this paper, thermal conductivity values of mild steel and stainless steel(STS) are measured by light flash analysis(LFA) and dynamic thermal interface material(DynTIM) Tester. The shapes of samples for thermal property measurement are disc type with a diameter of 12.6 mm. For samples with different thickness, the thermal diffusivity and thermal conductivity are measured by LFA. For identical samples, the thermal resistance($R_{th}$) and thermal conductivity are measured using a DynTIM Tester. The thermal conductivity of samples with different thicknesses, measured by LFA, show similar values in a range of 5 %. However, the thermal conductivity of samples measured by DynTIM Tester show widely scattered values according to the application of thermal grease. When we use the thermal grease to remove air gaps, the thermal conductivity of samples measured by DynTIM Tester is larger than that measured by LFA. But, when we did not use thermal grease, the thermal conductivity of samples measured by DynTIM Tester is smaller than that measured by LFA. For the DynTIM Tester results, we also find that the slope of the graph of thermal resistance vs. thickness is affected by the usage of thermal grease. From this, we are able to conclude that the wide scattering of thermal conductivity for samples measured with the DynTIM Tester is caused by the change of slope in the graph of thermal resistance-thickness.

Comparison of SBR/BR Blend Compound and ESBR Copolymer Having Same Butadiene Contents

  • Hwang, Kiwon;Lee, Jongyeop;Kim, Woong;Ahn, Byungkyu;Mun, Hyunsung;Yu, Eunho;Kim, Donghyuk;Ryu, Gyeongchan;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.54-60
    • /
    • 2019
  • The rapid development of the automobile industry is an important factor that led to the dramatic development of synthetic rubber. The tread part of tire that comes in direct contact with the road surface is related to the service life of the tire. Rubber compounds used in tire treads are often blended with SBR (styrene-butadiene rubber) and BR (butadiene rubber) to satisfy physical property requirements. However, when two or more kinds of rubber are blended, phase separation and silica dispersion problems may occur due to non-uniform mixing of the rubber. Therefore, in this study, we synthesized an SBR copolymer with the same composition as that of a typical SBR/BR blend compound by controlling butadiene content during ESBR (emulsion styrene-butadiene rubber) synthesis. Subsequently, silica filled compounds were manufactured using the synthesized ESBR, and their mechanical properties, dynamic viscoelasticity, and crosslinking density were compared with those of the SBR/BR blended compound. When the content of butadiene was increased in the silica filled compound, the cure rate accelerated due to an increased number of allylic positions, which typically exhibit higher reactivity. However, the T-2 compound with increased butadiene content by synthesis less likely to show an increase in crosslink density due to poor silica dispersion. In addition, the T-3 compound containing high cis BR content showed high crosslink density due to its monosulfide crosslinking structure. Because of the phase separation, SBR/BR blend compounds were easily broken and showed similar $M_{100%}$ and $M_{300%}$ values as those of other compounds despite their high crosslink density. However, the developed blend showed excellent abrasion resistance due to the high cis-1,4 butadiene content and low rolling resistance due to the high crosslink density.

Damage index based seismic risk generalization for concrete gravity dams considering FFDI

  • Nahar, Tahmina T.;Rahman, Md M.;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.53-66
    • /
    • 2021
  • The determination of the damage index to reveal the performance level of a structure can constitute the seismic risk generalization approach based on the parametric analysis. This study implemented this concept to one kind of civil engineering structure that is the concrete gravity dam. Different cases of the structure exhibit their individual responses, which constitute different considerations. Therefore, this approach allows the parametric study of concrete as well as soil for evaluating the seismic nature in the generalized case. To ensure that the target algorithm applicable to most of the concrete gravity dams, a very simple procedure has been considered. In order to develop a correlated algorithm (by response surface methodology; RSM) between the ground motion and the structural property, randomized sampling was adopted through a stochastic method called half-fractional central composite design. The responses in the case of fluid-foundation-dam interaction (FFDI) make it more reliable by introducing the foundation as being bounded by infinite elements. To evaluate the seismic generalization of FFDI models, incremental dynamic analysis (IDA) was carried out under the impacts of various earthquake records, which have been selected from the Pacific Earthquake Engineering Research Center data. Here, the displacement-based damage indexed fragility curves have been generated to show the variation in the seismic pattern of the dam. The responses to the sensitivity analysis of the various parameters presented here are the most effective controlling factors for the concrete gravity dam. Finally, to establish the accuracy of the proposed approach, reliable verification was adopted in this study.