• Title/Summary/Keyword: Dynamic Pressure Sensor

Search Result 85, Processing Time 0.027 seconds

An automatic calibration technique for piezoelectric pressure transducers (압전형 압력센서의 교정기법 자동화)

  • Hong, Sung-Soo;Choi, Ju-Ho;Yoo, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1368-1371
    • /
    • 1996
  • This paper presents an automatic calibration technique for piezoelectric low pressure transducer, which is useful to measure a pressure within 500 psi. This system with automatic calibration function and error correction algorithm generates standard dynamic pressure for the calibration of sensor. With the compensation for the offset voltage and the pressure error, the accuracy and the usefulness of the proposed scheme is validated.

  • PDF

An Automatic Calibration Technique for Piezoelectric Pressure Transducers (압전형 압력센서의 교정기법 자동화)

  • 홍성수;최주호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.1012-1016
    • /
    • 1996
  • This paper presents an automatic calibration technique for piezoelectic low pressure transducer, which is useful to measure a pressure within 500 psi. This system with automatic calibration function and error correction algorithm generates standard dynamic pressure for the calibration of sensor. With the compensation for the offset voltage and the pressure error, the accuracy and the usefulness of the proposed scheme is validated.

  • PDF

Development of a Pressure Distribution Measurement System (압력분포 측정시스템의 개발)

  • 정진호;이기원;김영호
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.213-218
    • /
    • 2000
  • Pressure distributions of the soft tissue are valuable for understanding and diagnosing the disease characteristics due to the mechanical loading. Our system measures dynamic pressure distributions in real-time under the general PC environment, and analyzes various foot disorders. Main features of the developed system are as follows: (1) With the resistive pressure sensor matrix of 40${\times}$40 cells, the data is sent to the PC with the maximum sampling rate of 40 frames/sec. (2) For each frame, contact area, pressure and force are analyzed by graphic forms. Thus, various biomechanical parameters are easily determined at specific areas of interests. (3) A certain stance phase can be chosen for the analysis from the continuous walking, and the detailed biomechanical analysis can be done according to an arbitrary line dividing anterior/posterior or medial/lateral plantar areas. (4) The center of pressure (COP) is calculated and traced from the pressure distribution data, and thus the movement of the COP is monitored in detail. A few experiments revealed that our system successfully measured the dynamic plantar distribution during normal walking.

  • PDF

A Study on the Cost-Effective Personalized Plantar Pressure Measurement System

  • Kang, Ji-Woo;Kwon, Young-Man;Lim, Meoung-Jae;Chung, Dong-Kun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.11-17
    • /
    • 2019
  • Plantar pressure data can be used not only for walking patterns in daily life, but also for eating, health care, and disease prevention. For this reason, the importance of plantar pressure measurement has recently increased. However, most systems that can measure both static and dynamic plantar pressure at the same time are expensive, not portable, and not universal. In this study, we propose a system that effectively reduces the number of sensors in plantar pressure system. Through this, we want to increase the economics and practicality by reducing the size and weight of the system, as well as the power consumption. First, for static plantar pressure and dynamic plantar pressure, the values measured by existing precision instruments are analyzed to determine how many measurement parts the insole is divided into. Next, for the divided measuring parts, the position of the sensor is determined by calculating the Center of Pressure (COP) for each part with the values of all dynamic and static plantar pressure sensors. Finally, in order to construct a personalized plantar pressure measurement system, we propose a weighting method for the static plantar pressure COP and the dynamic plantar pressure COP for each part.

Dynamic Stability Assessment of Pressure Hull in Deep Sea against Implosion Pressure Pulse (심해 환경 하에서 내파 충격파를 받는 내압 선체의 동적 좌굴 평가 기법)

  • Nho, In Sik;Cho, Sang Rai;Cho, Yoon Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.4
    • /
    • pp.198-206
    • /
    • 2020
  • In this study, the dynamic structural behavior of pressure vessels due to pressure pulse initiated by implosion of neighbouring airbacked equipments including Unmanned Underwater Vehicles (UUV), sensor system, and so on were dealt with for the structural design and safety assessment of pressure hulls of submarine. The dynamic buckling and collapse responses of pressure vessel in deep sea were investigated considering the effects of initial hydrostatic pressure and fluid-structure interactions. The governing equations for circular cylindrical shells were formulated theoretically assuming a relatively simple displacement fields and the derived nonlinear simultaneous ordinary differential equations were analysed by developed numerical solution algorithm. Finally, the introduced safety assessment procedures for the dynamic buckling behaviors of pressure hulls due to implosion pressure pulse were validated by comparing the theoretical analysis results with those of experiments for examples of simple cylinders.

Distributed Flexible Tactile Sensor (분포형 유연촉각센서)

  • 유기호;윤명종
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.60-65
    • /
    • 2004
  • A flexible tactile sensor away with 8 H 8 tactile elements is designed and fabricated. The material of the sensor is PVDF(polyvinylidene fluoride) film and flexible circuitry is used in the fabrication fur the flexibility of the sensor The experimental results on static and dynamic properties of the sensor are obtained and examined. The signals of a contact pressure to the sensor are sensed and processed in the DSP system in which the signals are digitalized and filtered. The processed signals of the sensor outputs are visualized in a personal computer for illustrating the shape and force distribution of a contact object. The reasonable performance for the detection of contact state is verified through sensing examples.

Non-contact Impact-Echo Based Detection of Damages in Concrete Slabs Using Low Cost Air Pressure Sensors (저비용 음압센서를 이용한 콘크리트 구조물에서의 비접촉 Impact-Echo 기반 손상 탐지)

  • Kim, Jeong-Su;Lee, Chang Joon;Shin, Sung Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.171-177
    • /
    • 2011
  • The feasibility of using low cost, unpowered, unshielded dynamic microphones is investigated for cost effective contactless sensing of impact-echo signals in concrete structures. Impact-echo tests on a delaminated concrete slab specimen were conducted and the results were used to assess the damage detection capability of the low cost system. Results showed that the dynamic microphone successfully captured impact-echo signals with a contactless manner and the delaminations in concrete structures were clearly detected as good as expensive high-end air pressure sensor based non-contact impact-echo testing.

A Study of Detection Properties of Piezoresistive CNT/PDMS Devices with Porous Structure (다공성 구조를 가진 압저항 CNT/PDMS 소자의 감지특성 연구)

  • Wonjun Lee;Sang Hoon Lee
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.165-172
    • /
    • 2024
  • In this study, we investigated the detection properties of piezoresistive carbon nanotubes/polydimethylsiloxane (CNT/PDMS) devices with porous structures under applied pressure. The device, having dimensions of 10 mm × 10 mm × 5 mm, was fabricated with a porosity of 74.5%. To fabricate piezoresistive CNT/PDMS devices, CNTs were added using two different methods. In the first method, the CNTs were mixed with PDMS before the fabrication of the porous structure, while in the second, the CNTs were coated after the fabrication of the porous structure. Various detection properties of the fabricated devices were examined at different applied pressures. The CNT-coated device exhibited stable outputs with lesser variation than the CNT-mixed device. Moreover, the CNT-coated device exhibited improved reaction properties. The response time of the CNT-coated device was 1 min, which was approximately about 20 times faster than that of the CNT-mixed device. Considering these properties, CNT-coated devices are more suitable for sensing devices. To verify the CNT-coated device as a real sensor, it was applied to the gripping sensor system. A multichannel sensor system was used to measure the pressure distribution of the gripping sensor system. Under various gripping conditions, this system successfully measured the distributed pressures and exhibited stable dynamic responses.

AERODYNAMIC DESIGN OF A VANE TYPE MULTI-FUNCTION AIR DATA SENSOR (베인형 다기능 대기 자료 센서의 공력 설계)

  • Park, Y.M.;Choi, I.H.;Lee, Y.G.;Kwon, K.J.;Kim, S.C;Hwang, I.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.43-49
    • /
    • 2010
  • Aerodynamic design of the vane type multi-function probe was tried by using CFD and wind tunnel test for the MALE UAV and small business jets. The present multi-function probe can measure total pressure, static pressure and angle of attack by using rotating vane. Therefore major performances are determined by aerodynamic characteristics of vane. In oder to design the sensor compatible to the requirement, aerodynamic characteristics of sensors was investigated by using CFD and dynamic response analysis was also performed for trasient performance. The final aerodynamic performance was measured by the wind tunnel test at Aeorsonic and the results successfully used for the design of vane type multi-function air data sensor.

  • PDF

AERODYNAMIC DESIGN OF A MULTI-FUNCTION AIR DATA SENSOR BY USING CFD AND WIND TUNNEL TEST (전산해석 및 풍동시험을 이용한 다기능 대기 자료 센서의 공력 설계)

  • Park, Y.M.;Choi, I.H.;Lee, Y.G.;Kwon, K.J.;Kim, S.C.;Hwang, I.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.32-38
    • /
    • 2010
  • Aerodynamic design of the vane type multi-function probe was tried by using CFD and wind tunnel test for the MALE UAV and small business jets. The present multi-function probe can measure total pressure, static pressure and angle of attack by using rotating vane. Therefore, major performances are determined by aerodynamic characteristics of vane. In order to design the sensor compatible to the requirement, aerodynamic characteristics of sensors were investigated by using CFD and dynamic response analysis was also performed for transient performance. The final aerodynamic performance was measured by the wind tunnel test at Aerosonic and the results were compared with the present design. The results showed that the aerodynamic design using the CFD can be successfully used for the design of vane type multi-function air data sensor.