• Title/Summary/Keyword: Dynamic Power Management

Search Result 274, Processing Time 0.023 seconds

Power Management for Software Radio Systems (소프트웨어 라디오 시스템을 위한 전력 관리 기법)

  • Gu, Bon-Cheol;Piao, Xuefeng;Heo, Jun-Young;Jeon, Gwang-Il;Cho, Yoo-Kun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.11
    • /
    • pp.1051-1055
    • /
    • 2010
  • Software defined radio(SDR) technology implements wireless communication protocols as software instead of dedicated hardware. SDR enables reconfiguration of wireless communication protocols without expensive hardware modification. However, as the SDR systems are equipped with additional programmable processors, they suffer significant power dissipation. This paper proposes a novel power management technique for SDR systems, called the combined modulation and voltage scaling (CMVS). Numerical analyses were performed to evaluate the effectiveness of CMVS. The results show that CMVS minimizes power dissipation while satisfying the given data transfer rate.

Dynamic Power Management Framework for Mobile Multi-core System (모바일 멀티코어 시스템을 위한 동적 전력관리 프레임워크)

  • Ahn, Young-Ho;Chung, Ki-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.7
    • /
    • pp.52-60
    • /
    • 2010
  • In this paper, we propose a dynamic power management framework for multi-core systems. We reduced the power consumption of multi-core processors such as Intel Centrino Duo and ARM11 MPCore, which have been used at the consumer electronics and personal computer market. Each processor uses a different technique to save its power usage, but there is no embedded multi-core processor which has a precise power control mechanism such as dynamic voltage scaling technique. The proposed dynamic power management framework is suitable for smart phones which have an operating system to provide multi-processing capability. Basically, our framework follows an intuitive idea that reducing the power consumption of idle cores is the most effective way to save the overall power consumption of a multi-core processor. We could minimize the energy consumption used by idle cores with application-targeted policies that reflect the characteristics of active workloads. We defined some properties of an application to analyze the performance requirement in real time and automated the management process to verify the result quickly. We tested the proposed framework with popular processors such as Intel Centrino Duo and ARM11 MPCore, and were able to find that our framework dynamically reduced the power consumption of multi-core processors and satisfied the performance requirement of each program.

Adopting the Banked Register File Scheme for Better Performance and Less Leakage

  • Jang, Hyung-Beom;Chung, Eui-Young;Chung, Sung-Woo
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.624-626
    • /
    • 2008
  • Excessively high temperature deteriorates the reliability and increases the leakage power consumption of microprocessors. The register file, known as one of the hottest functional units in microprocessors, incurs frequent dynamic thermal management operations for thermal control. In this letter, we adopt the banked register file scheme, which was originally proposed to reduce dynamic power consumption. By simply modifying the register file structure, the temperature in the register file was reduced dramatically, resulting in 13.37% performance improvement and 10.49% total processor leakage reduction.

  • PDF

A plant-specific HRA sensitivity analysis considering dynamic operator actions and accident management actions

  • Kancev, Dusko
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1983-1989
    • /
    • 2020
  • The human reliability analysis is a method by which, in general terms, the human impact to the safety and risk of a nuclear power plant operation can be modelled, quantified and analysed. It is an indispensable element of the PSA process within the nuclear industry nowadays. The paper herein presents a sensitivity study of the human reliability analysis performed on a real nuclear power plant-specific probabilistic safety assessment model. The analysis is performed on a pre-selected set of post-initiator operator actions. The purpose of the study is to investigate the impact of these operator actions on the plant risk by altering their corresponding human error probabilities in a wide spectrum. The results direct the fact that the future effort should be focused on maintaining the current human reliability level, i.e. not letting it worsen, rather than improving it.

The Design and Implementation of Low Power Real-Time Operating System Using Dynamic Power Management (DPM 기법을 적용한 저전력 실시간 운영체제 설계 및 구현)

  • Cho, Moon-Haeng;Lee, Cheol-Hoon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10a
    • /
    • pp.281-286
    • /
    • 2006
  • 배터리로 동작하는 휴대용 기기와 같은 임베디드 시스템은 복잡한 애플리케이션을 보다 오랜 시간 동안 동작할 수 있도록 하기 위해 하드웨어와 소프트웨어 측면 모두에서 저전력 기법의 구성이 필요하다. 한정된 하드웨어 시스템의 자원을 효율적으로 관리하고 보다 적은 전력소모를 위해서는 저전력 기법이 탑재된 저전력 실시간 운영체제가 필요하다. 본 논문에서는 IBM 과 MontaVista Software 에서 제안한 DPM(Dynamic Power Management) 기법을 적용한 저전력 실시간 운영체제를 설계 및 구현하였다.

  • PDF

A VALIDATION METHOD FOR EMERGENCY OPERATING PROCEDURES OF NUCLEAR POWER PLANTS BASED ON DYNAMIC MULTI-LEVEL FLOW MODELING

  • QIN WEI;SEONG POONG HYUN
    • Nuclear Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.118-126
    • /
    • 2005
  • While emergency operating procedures (EOPs) occupy an important role in the management of various abnormal situations in nuclear power plants (NPPs), current technology for the validation of EOPs still largely depends on manual review. A validation method for EOPs of NPPs is thus proposed based on dynamic multi-level flow modeling (MFM). The MFM modeling procedure and the EOP validation procedure are developed and provided in the paper. Application of the proposed method to EOPs of an actual NPP shows that the proposed method provides an efficient means of validating EOPs. It is also found that the information on state transitions in MFM models during the management of abnormal situations is also useful for further analysis on EOPs including their optimization.

Design and Implementation of Road Construction Risk Management System based on LPWA and Bluetooth Beacon

  • Lee, Seung-Soo;Kim, Yun-cheol;Jee, Sung-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.145-151
    • /
    • 2018
  • While commercialization of IoT technologies in the safety management sector is being promoted in terms of industrial safety of large indoor businesses, implementing a system for risk management of small outdoor work sites with frequent site movements is not actively implemented. In this paper, we propose an efficient dynamic workload balancing strategy which combined low-power, wide-bandwidth (LPWA) communication and low-power Bluetooth (BLE) communication technologies to support customized risk management alarm systems for each individual (driver/operator/manager). This study was designed to enable long-term low-power collection and transmission of traffic information in outdoor environment, as well as to implement an integrated real-time safety management system that notifies a whole field worker who does not carry a separate smart device in advance. Performance assessments of the system, including risk alerts to drivers and workers via Bluetooth communication, the speed at which critical text messages are received, and the operation of warning/lighting lamps are all well suited to field application.

Distribution of supply chain capabilities and firm's sustainable development

  • TO, Tha Hien;THAN, Thuy Trong;NGUYEN, Duyen Thi Kim;NGUYEN, Dat Ngoc
    • Journal of Distribution Science
    • /
    • v.19 no.5
    • /
    • pp.5-12
    • /
    • 2021
  • Purpose: Research on supply chain sustainability is important for exporters When the factor of sustainable development is considered by the businesses as well as governments of all countries. Research on supply chain sustainability is important for exporters. Sustainable supply chain management and supply chain dynamics will help enterprises adapt to changes in the business environment. This study analyzes the impact of sustainable supply chain management, and supply chain dynamic capabilities on the sustainable development of exporting enterprises in Vietnam. Research design, data, and methodology: The research model and survey are designed based on previous studies after surveying export enterprises. With 185 samples collected from export enterprises. The Structural Equation Modeling (SEM) analysis technique is used. Data analysis is performed on SPSS and AMOS software (Reliability test, Confirmatory Factor Analysis, SEM). Results: Sustainable supply chain management and supply chain dynamic capabilities all have positive effects on the sustainable development of businesses (sustainable development is measured by distribution: measuring economic efficiency, social efficiency, and environmental performance). Conclusions: From the results of this study, the authors also made several recommendations to help export enterprises develop sustainability based on sustainable supply chain management and supply chain dynamic capabilities.

Evaluating Power Consumption and Real-time Performance of Android CPU Governors (안드로이드 CPU 거버너의 전력 소비 및 실시간 성능 평가)

  • Tak, Sungwoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2401-2409
    • /
    • 2016
  • Android CPU governors exploit the DVFS (Dynamic Voltage Frequency Scaling) technique. The DVFS is a power management technique where the CPU operating frequency is decreased to allow a corresponding reduction in the CPU supply voltage. The power consumed by a CPU is approximately proportional to the square of the CPU supply voltage. Therefore, lower CPU operating frequency allows the CPU supply voltage to be lowered. This helps to reduce the CPU power consumption. However, lower CPU operating frequency increases a task's execution time. Such an increase in the task's execution time makes the task's response time longer and makes the task's deadline miss occur. This finally leads to degrading the quality of service provided by the task. In this paper, we evaluated the performance of Android CPU governors in terms of the power consumption, tasks's response time and deadline miss ratio.

Design and Implementation on High Efficient EPMS(Energy-Power Management System) for USN Sensor Node Using Self-Charging Module (자가 충전 모듈을 이용한 USN 센서노드용 고효율 에너지 전력관리 시스템 구현 및 검증)

  • Kim, Hyun-Woong;Park, Hee-Jeong;Lim, Se-Mi;Oh, Jong-Hwa;Roh, Hyoung-Hwan;Park, Jun-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.124-130
    • /
    • 2011
  • In this paper, We design and implementation of Self-Charging Module for charging to battery which obtaining the environment inergy such as solar energy. The power chared battery through the charging module send to sensor node. And implementation of System Activation Module(SAM) based on ID system and Dynamic Power Management Module(DPM) with SPO(Self Power Off). This system consume power only communication between the sensor nodes. We verification this system by implementing the high efficiency poweer management system.