• 제목/요약/키워드: Dynamic Power Management

검색결과 274건 처리시간 0.024초

임베디드 시스템에서 DFS 기법을 이용한 동적 전력 관리 (Dynamic Power Management using Dynamic Frequency Scaling in Embedded System)

  • 권기현;김남용;변형기
    • 디지털콘텐츠학회 논문지
    • /
    • 제10권2호
    • /
    • pp.217-223
    • /
    • 2009
  • XScale PXA255 기반 Embedded Linux 환경에서 전력 소비를 줄이기 위해 DFS(Dynamic Frequency Scaling) 기법의 디바이스 드라이버를 제작하고 이 디바이스 드라이버가 포팅되어 있는 임베디드 타겟보드의 전력을 관리하기 위한 미들웨어 DFM(Dynamic Frequency Management)를 설계하고 구현하여 임베디드 시스템의 전력 소비를 감소하는 방법을 제시한다.

  • PDF

모바일 단말에서의 전원관리 기술 (Power Management for Mobile Terminal)

  • 이정희;박호준;김재명
    • 대한임베디드공학회논문지
    • /
    • 제2권3호
    • /
    • pp.194-201
    • /
    • 2007
  • As the performance of the mobile terminal becomes higher, the power consumption gradually increases. As a result, power management is one of the most important issues in mobile system with battery. In this paper, we describe an DPM(Dynamic Power Management) using DVS(Dynamic Power Management) as a power management mechanism in Qplus operating system. DVS generally considers a specific device such as CPU, whereas we consider the relations with other hardware components as well as each component. We specially focus on the relation between CPU, memory and LCD devices. We also designs a kernel monitor to collect information to decide the policy for power management. According to the experimental results, the proposed method enables to save much power.

  • PDF

Dynamic Power Management Structure for Energy Harvesting Pervasive Computing System

  • Bae, Hyeoungho;Kim, Dong-Sung
    • 대한임베디드공학회논문지
    • /
    • 제1권1호
    • /
    • pp.1-7
    • /
    • 2006
  • In this paper, a novel power management structure for an energy harvesting pervasive system is proposed. The system considers the power state of each subsystem to assign proper power sources. The switch matrix structure utilizes each power source to reduce the peak current of the battery. The power management structure can be interfaced to an embedded system power supply without significant design change.

  • PDF

A Dynamic Frequency Controlling Technique for Power Management in Existing Commercial Microcontrollers

  • Lueangvilai, Attakorn;Robertson, Christina;Martinez, Christopher J.
    • Journal of Computing Science and Engineering
    • /
    • 제6권2호
    • /
    • pp.79-88
    • /
    • 2012
  • Power continues to be a driving force in central processing units (CPU) design. Most of the advanced breakthroughs in power have been in a realm that is applicable to workstation CPUs. Advanced power management systems will manage temperature, dynamic voltage scaling and dynamic frequency scaling in a CPU. The use of power management systems for microcontrollers and embedded CPUs has been modest, and mostly focuses on very large scale integration (VLSI) level optimizations compared to system level optimizations. In this paper, a dynamic frequency controlling (DFC) technique is introduced, to lay the foundation of a system level power management system for commercial microcontrollers. The DFC technique allows a commercial microcontroller to have minor modifications on both the hardware and software side, to allow the clock frequency to change to save power; results in this study show a 10% savings. By adding an additional layer of software abstraction at the interrupt level, the microcontroller can operate without having knowledge of the current clock frequency, and this can be accomplished without having to use an embedded operating system.

120kW급 IGBT 인버터의 열 응답 특성 실시간 모델 (A Real Time Model of Dynamic Thermal Response for 120kW IGBT Inverter)

  • 임석연;차강일;유상석
    • 한국수소및신에너지학회논문집
    • /
    • 제26권2호
    • /
    • pp.184-191
    • /
    • 2015
  • As the power electronics system increases the frequency, the power loss and thermal management are paid more attention. This research presents a real time model of dissipation power with junction temperature response for 120kw IGBT inverter which is applied to the thermal management of high power IGBT inverter. Since the computational time is critical for real time simulation, look-up tables of IGBT module characteristic curve are implemented. The power loss from IGBT provides a clue to calculate the temperature of each module of IGBT. In this study, temperature of each layer in IGBT is predicted by lumped capacitance analysis of layers with convective heat transfer. The power loss and temperature of layers in IGBT is then communicated due to mutual dependence. In the dynamic model, PWM pulses are employed to calculation real time IGBT and diode power loss. Under Matlab/Simulink$^{(R)}$ environment, the dynamic model is validated with experiment. Results showed that the dynamic response of power loss is closely coupled with effective thermal management. The convective heat transfer is enough to achieve proper thermal management under guideline temperature.

가정용 연료전지 시스템의 열관리 해석 (Thermal Management Study of PEMFC for Residential Power Generation)

  • 유상석;이영덕;안국영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2839-2844
    • /
    • 2008
  • A PEMFC(proton exchange membrane fuel cell) is a good candidate for residential power generation to be cope with the shortage of fossil fuel and green house gas emission. The attractive benefit of the PEMFC is to produce electric power as well as hot water for home usage. Typically, thermal management of vehicular PEMFC is to reject the heat from the PEMFC to the ambient air. Different from that, the thermal management of PEMFC for RPG is to utilize the heat of PEMFC so that the PEMFC can be operated at its optimal efficiency. In this study, dynamic thermal management system is modeled to understand the response of the thermal management system during dynamic operation. The thermal management system of PEMFC for RPGFC is composed of two cooling circuits, one for controling the fuel cell temperature and the other for heating up the water for home usage. Dynamic responses and operating strategies of the PEMFC system are investigated during load changes.

  • PDF

Energy-aware Management in Wireless Body Area Network System

  • Zhang, Xu;Xia, Ying;Luo, Shiyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권5호
    • /
    • pp.949-966
    • /
    • 2013
  • Recently, Wireless Body Area Network (WBAN) has promise to revolutionize human daily life. The need for multiple sensors and constant monitoring lead these systems to be energy hungry and expensive with short operating lifetimes. In this paper, we offer a review of existing work of WBAN and focus on energy-aware management in it. We emphasize that nodes computation, wireless communication, topology deployment and energy scavenging are main domains for making a long-lived WBAN. We study the popular power management technique Dynamic Voltage and Frequency Scaling (DVFS) and identify the impact of slack time in Dynamic Power Management (DPM), and finally propose an enhanced dynamic power management method to schedule scaled jobs at slack time with the goal of saving energy and keeping system reliability. Theoretical and experimental evaluations exhibit the effectiveness and efficiency of the proposed method.

추계적 프로세스 기반 동적 전력 관리 (Dynamic Power Management based on Stochastic Processes)

  • 노철우;김경민;폴 무두시
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2007년도 추계 종합학술대회 논문집
    • /
    • pp.197-200
    • /
    • 2007
  • 동적 전력 관리는 서로 다른 전력소모를 갖는 전력상태들을 시스템 구성 요소에 할당하고 상황별로 전력상태를 관리함으로써 시스템의 전력 소모를 현저하게 줄여줄 수 있다. 전력관리의 주 기능은 구성요소의 상태천이를 언제 수행하느냐 이며 이를 위하여 추계적 프로세스에 기반한 동적 전력관리 모델을 개발한다. 동적 모델은 시스템 큐와 다양한 모델링 기능을 표현할 수 있는 페트리 네트의 확장형인 SRN(Stochastic Reward Nets)을 이용하여 개발되며 성능분석을 함께 수행한다.

  • PDF

가정용 연료전지 시스템 동특성 해석 모델 (A Dynamic Model of PEMFC for Residential Power Generator)

  • 유상석;김한석;이상민;이영덕;안국영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.12-16
    • /
    • 2007
  • A dynamic model of proton exchange membrane fuel cell(PEMFC) system is designed to understand the performance of the PEMFC in residential power generator(RPG) over various balance of plant(BOP) options. In particular, since the performance of PEMFC system should be optimized for given operating ranges, it is necessary to design suitable BDP components which can support the operating ranges. The objective of this study is to develop a dynamic system model for the study of PEMFC performance over various BOP options. Therefore, a dynamic model is composed of a PEMFC stack model, a water management system model, a thermal management system model and a fuel/air supply model and the model is integrated under SIMULINK(R)environment. Basic simulation results will be presented.

  • PDF

A layer-wise frequency scaling for a neural processing unit

  • Chung, Jaehoon;Kim, HyunMi;Shin, Kyoungseon;Lyuh, Chun-Gi;Cho, Yong Cheol Peter;Han, Jinho;Kwon, Youngsu;Gong, Young-Ho;Chung, Sung Woo
    • ETRI Journal
    • /
    • 제44권5호
    • /
    • pp.849-858
    • /
    • 2022
  • Dynamic voltage frequency scaling (DVFS) has been widely adopted for runtime power management of various processing units. In the case of neural processing units (NPUs), power management of neural network applications is required to adjust the frequency and voltage every layer to consider the power behavior and performance of each layer. Unfortunately, DVFS is inappropriate for layer-wise run-time power management of NPUs due to the long latency of voltage scaling compared with each layer execution time. Because the frequency scaling is fast enough to keep up with each layer, we propose a layerwise dynamic frequency scaling (DFS) technique for an NPU. Our proposed DFS exploits the highest frequency under the power limit of an NPU for each layer. To determine the highest allowable frequency, we build a power model to predict the power consumption of an NPU based on a real measurement on the fabricated NPU. Our evaluation results show that our proposed DFS improves frame per second (FPS) by 33% and saves energy by 14% on average, compared with DVFS.