• Title/Summary/Keyword: Dynamic Positioning Control System

Search Result 123, Processing Time 0.033 seconds

High Speed Positioning of a Pneumatic Control System with a $H_{\infty}$ Controller ($H_{\infty}$ 제어기를 이용한 공기압 구동시스템의 위치제어 성능 향상에 관한 연구)

  • Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.67-72
    • /
    • 1998
  • To improve control performance, especially positioning speed, of a pneumatic positioning system, dynamic characteristics of a control valve should be considered. In case we design controller including dynamic characteristics of a control valve, it's not easy to design controller gain using simple state feedback because degree of a control system is increased. This study designed controller using loop shaping of $H_{\infty}$ control theory for a model composed of a pneumatic actuator and a control valve, and positioning experiment using this controller was performed. As a result, it was verified that the controller is useful for high speed positioning of a pneumatic positioning system.

  • PDF

Experimental Study on Dynamic Positioning Contol of a Semi-Submergible Platform (반잠수식 해양구조물의 동위치제어에 관한 실험적 연구)

  • 김성근;유휘룡;김상봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.661-669
    • /
    • 1995
  • This paper presents a design method of dynamic positioning control system in view ofpractical design concept for reliability and robust realization. This method adopts a design method of multivariable robust servo system. The practical experiments of the dynamic positioning control were carried out for a semi-submersible 2-lower hull type platform model with 4 rotatable thrusters in a small water tank. The results fo overall experiment show that the proposed position control method will be an efficient method to the better control performance of dynamic positioning system under serere environment and it is substentially practicable for the platform.

An alternative portable dynamic positioning system on a barge in short-crested waves using the fuzzy control

  • Fang, Ming-Chung;Lee, Zi-Yi
    • Ocean Systems Engineering
    • /
    • v.5 no.3
    • /
    • pp.199-220
    • /
    • 2015
  • The paper described the nonlinear dynamic motion behavior of a barge equipped with the portable outboard Dynamic Positioning(DP) control system in short-crested waves. The DP system based on the fuzzy theory is applied to control the thrusters to optimally adjust the ship position and heading in waves. In addition to the short-crested waves, the current, wind and nonlinear drifting force are also included in the calculations. The time domain simulations for the six degrees of freedom motions of the barge with the DP system are solved by the $4^{th}$ order Runge-Kutta method. The results show that the position and heading deviations are limited within acceptable ranges based on the present control method. When the dynamic positioning missions are needed, the technique of the alternative portable DP system developed here can serve as a practical tool to assist those ships without equipping with the DP facility.

Performance analysis of dynamic positioning system with loss of propulsion power of T/S NARA (실습선 나라호의 추진력 상실에 따른 동적위치제어시스템의 성능 분석)

  • LEE, Jun-Ho;KONG, Kyeong-Ju;JUNG, Bong-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.2
    • /
    • pp.181-187
    • /
    • 2018
  • In order for the probe to perform ocean exploration and survey research, it is necessary to adjust the position of the ship as desired by dynamic positioning system. The dynamic positioning system of T/S NARA is applied to K-POS dynamic positioning system of Kongsberg, which makes maintaining the ship's position, changing position and heading control possible. T/S NARA is not capable of dynamic positioning if one or more propulsive forces are lost with DP Level One. However, it is predicted that dynamic positioning can be achieved even at the time of missing one thrust in a good sea condition. Therefore, we want to analyze the effect of each propulsion on the performance of dynamic position system. When one of the bow thruster and azimuth thrusters lost their propulsion, maintaining the ship's position, changing position and heading control performance were compared and analyzed. If the situation occurred disable from using the bow thruster, they can not maintain ship's position. Azimuth thruster was influential for the ship's position control and bow thruster was influential in heading control. The excellent dynamic positioning performance can be achieved, considering the propulsion power that will have a impact on each situation in the future.

A Study on the Feedforward Control Algorithm for Dynamic Positioning System Using Ship Motion Prediction (선체운동 예측을 이용한 Dynamic Positioning System의 피드포워드 제어 알고리즘에 관한 연구)

  • Song, Soon-Seok;Kim, Sang-Hyun;Kim, Hee-Su;Jeon, Ma-Ro
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.129-137
    • /
    • 2016
  • In the present study we verified performance of feed-forward control algorithm using short term prediction of ship motion information by taking advantage of developed numerical simulation model of FPSO motion. Up until now, various studies have been conducted about thrust control and allocation for dynamic positioning systems maintaining positions of ships or marine structures in diverse sea environmental conditions. In the existing studies, however, the dynamic positioning systems consist of only feedback control gains using a motion of vessel derived from environmental loads such as current, wind and wave. This study addresses dynamic positioning systems which have feedforward control gain derived from forecasted value of a motion of vessel occurred by current, wind and wave force. In this study, the future motion of vessel is forecasted via Brown's Exponential Smoothing after calculating the vessel motion via a selected mathematical model, and the control force for maintaining the position and heading angle of a vessel is decided by the feedback controller and the feedforward controller using PID theory and forecasted vessel motion respectively. For the allocation of thrusts, the Lagrange Multiplier Method is exploited. By constructing a simulation code for a dynamic positioning system of FPSO, the performance of feedforward control system which has feedback controller and feedforward controller was assessed. According to the result of this study, in case of using feedforward control system, it shows smaller maximum thrust power than using conventional feedback control system.

Application of neuro-fuzzy algorithm to portable dynamic positioning control system for ships

  • Fang, Ming-Chung;Lee, Zi-Yi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.38-52
    • /
    • 2016
  • This paper describes the nonlinear dynamic motion behavior of a ship equipped with a portable dynamic positioning (DP) control system, under external forces. The waves, current, wind, and drifting forces were considered in the calculations. A self-tuning controller based on a neuro-fuzzy algorithm was used to control the rotation speed of the outboard thrusters for the optimal adjustment of the ship position and heading and for path tracking. Time-domain simulations for ship motion with six degrees of freedom with the DP system were performed using the fourth-order RungeeKutta method. The results showed that the path and heading deviations were within acceptable ranges for the control method used. The portable DP system is a practical alternative for ships lacking professional DP facilities.

A Study on the Development of Dynamic Positioning System for Barge Type Surface Vessels (Barge 형 수상선의 DP(Dynamic Positioning) System 개발에 관한 연구)

  • Bui, Van-Phuoc;Kim, Young-Bok
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.66-74
    • /
    • 2012
  • In this paper, the authors propose a new approach to control a barge type surface vessel. It is based on the Dynamic Positioning System(DPS) design. The main role of barge ship is to carry and supply the materials to the floating units and other places. To carry out this job, it should be positioned in the specified area. However sometimes the thrust systems are installed on it, and in general the rope control by mooring winch system is used. It may be difficult to compare the control performances of two types. If we consider this problem in point of usefulness, we can easily find out that the winch control system is more useful and applicable to the real field than the thrust control system except a special use. Therefore, in this paper we consider a DPS design problem which can be extended to the many application fields. The goal of this paper is twofold. First, the sliding mode controller (SMC) for positioning the our vessel is proposed. Especially, in this paper, a robust stability condition is given based on descriptor system representation. In the result, the sliding mode control law guarantees to keep the vessel in the defined area in the presence of environmental disturbances. And second, the thrust allocation problem is solved by using redistributed pseudo-inverse (RPI) algorithm to determine the thrust force and direction of each individual actuator. The proposed approach has been simulated with a supply vessel model and found work well.

A study on time optimal positioning control of robotic manipulator (로보트 팔의 최소시간 위치제어에 관한 연구)

  • 김종찬;배준경;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.45-48
    • /
    • 1986
  • In this paper, time optimal positioning control of the robotic manipulator is discussed. The equations for dynamic model of the robotic manipulator are nonolinear, and each link is highly coupled. A feedback linearizing and decoupling transformation makes the dynamic model linearized and decoupled, and optimal control input for the linear and decoupled system is derived.

  • PDF

Dynamic Positioning Control of Floating Platform using $H_{\infty}$ Control Method ($H_{\infty}$ 제어법을 이용한 부유식 플랫폼의 동위치 제어)

  • 유휘룡;김환성;김상봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.153-161
    • /
    • 1996
  • This paper presents a design method of dynamic positioning control system for floating platform with rotatable and retractable thruster using $H_{\infty}$ control technique. The norm band of uncertainty is captured by multiplicative perturbation between nominal model and reduced order model. A controller robust to the uncertainty is designed applying $H_{\infty}$ synthesis. The control law satisfying robust stabillity and nominal performance condition is determined through the mixed sensitivity approach. The evaluation for the resultant controller obtained by $H_{\infty}$ synthesis is done through simulations of the closed loop system. The results of $H_{\infty}$ synthesis are compared to those of the traditional LQ synthesis method.

  • PDF

Design and Application of an Adaptive Neural Network to Dynamic Positioning Control of Ship

  • Nguyen, Phung-Hung;Jung, Yun-Chul
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.285-290
    • /
    • 2006
  • This paper presents an adaptive neural network based controller and its application to Dynamic Positioning (DP) control system of ship. The proposed neural network based controller is developed for station-keeping and low-speed maneuvering control of ship. At first, the DP system configuration is described. And then, to validate the proposed DP system, computer simulations of station-keeping and low-speed maneuvering performance of a multi-purpose supply ship are presented under the influence of measurement noise, external disturbances such as sea current, wave, and wind. The simulations have shown the feasibility of the DP system in various maneuvering situations.

  • PDF