• Title/Summary/Keyword: Dynamic Modulus of Elasticity

Search Result 197, Processing Time 0.024 seconds

An Experimental Study on Elastic Properties of Rice Straw Ash Concrete (볏짚재 콘크리트의 탄성특성에 관한 실험적 연구)

  • 성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.1
    • /
    • pp.92-98
    • /
    • 2000
  • This study is performed to evaluate the elastic properties of rice straw ash concrete using reices straw ash, cement, natural sand, gravel, and superplasticizer. The following conclusions are drawn ; The ultrasonic pulse velicity is in the range of 4,084 ~4,336m/s , which has showed about the same compared to that of the normla cement concrete. The highest ultrasonic pulse velocity is showed by 5 % rice straw ash filled rice straw ash concrete. The dynamic and static modulus of elasticity is in the range of 294 $\times$10$^3$ ~347 $\times$ 10$^3$ and 266 $\times$10$^3$~328 $\times$10$^3$kgf/㎤ , respectively. It is showed about the same compared to that of the normal cement concrete. The Poisson's number of rice straw ash concrete is less than that of the normal cement concrete.

  • PDF

Experimental Study on the Elastic Properties and Acid Resistance of Pine Needle Ash Concrete (솔잎재 콘크리트의 탄성특성 및 내산성에 관한 실험적 연구)

  • 남기성;민정기;김영익;서대석;이전성;성찬용
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.271-276
    • /
    • 1999
  • This study is performed to evaluate an elastic properties and acid-resistance of concrete using pine needle ash(PNA). Materials used for this experiment are PNA , normal portland cement, natural fine and coarse aggregate. Test results show that the highest ultrasonic pulse velocity , dynamic and static modulus of elasticity is achieved by 5% PNA filled PNA concrete, which has showed similar with those of thei normal cement concrete. Acid-resistance of PNA concrete is increased with increase of the contnet of PNA , it is 1.29 times of the normal cement concrete by 5% PNA fille PNA concrete an d2.57 times by 15% PNA filled PNA concrete . Accordingly , PNA concrete wil greatly improve the properties of concrete.

  • PDF

Freeze-Thaw Resistance and Void Characteristic of Blended Cement Concrete using Seawater (해수를 사용한 혼합시멘트계 콘크리트의 동결융해 저항성 및 공극특성)

  • Kim, Seong-Soo;Lee, Seung-Tae;Jung, Ho-Seop;Park, Kwang-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.589-592
    • /
    • 2006
  • The durability of concrete involves resistance to freeze-thaw action, corrosion, permeation, carbonation, chemical attack and so on. Generally, properties of concrete have been well understood under the separate action of these deterioration mechanisms. However, in practice, the degradation of concrete usually is the result of combined action of physical and chemical attack and can be accelerated by the combined action of several deterioration mechanisms. In the present study, to evaluate the combined deterioration by freeze-thaw action and seawater attack, ground granulated blast-furnace slag or silica fume concrete with water or seawater as mixing water was exposed to 300 cycles of freeze-thaw action. Tests were conducted to determined the relative dynamic modulus of elasticity and compressive strength. Furthermore, The MIP analysis were performed on the deteriorated part of concrete due to freeze-thaw action and seawater attack.

  • PDF

Evaluation of Durability of Highstrength Light-weight Aggregate Concretes (고강도 경량골재 콘크리트의 내구성에 관한 연구)

  • 김광우;이상범;조회원;정규동;이석홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.416-421
    • /
    • 1997
  • This study was conducted to evaluate durability of high-strength light-weight aggregate concretes which are increasingly demanded recently. Two different artificial light-weight aggregates were used and two levels of high-strength concretes were made using w/c of 33% and 37% for target strength of 500kg/$\textrm{cm}^2$ and 400kg/$\textrm{cm}^2$, respectively. Cylinder specimens($\phi$=10cm and h=20cm) were made and treated with freezing-and-thawing(F/T) cycle at $-18^{\cire}C$ and $4^{\cire}C$. Dynamic modulus of elasticity and surface condition were evaluated with F/T cycle increase. The results showed that durability of the light-weight aggregate concretes was worse than that of conventional concrete, and the light-weight high-strength concrete with w/c=37% had the better durability than the one with w/c=33%.

  • PDF

Physical and Mechanical Properties of High Strength Concrete Using Recycled Aggregate (재생골재를 사용한 고강도 콘크리트의 물리.역학적 특성)

  • Im, Sang-Hyuk;Sung, Chan-Yong;Jeong, Duck-Hyun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.399-402
    • /
    • 2003
  • This study is performed to examine the physical and mechanical properties of the high strength concrete using recycled aggregate. The recycled aggregate is replaced by 0%, 25%, 50%, 75%, 100% of natural crushed aggregate. The compressive strength of the concrete used recycled aggregate is shown in more than $400kgf/cm^2$ at the curing age 28 days. But the pulse velocity and dynamic modulus of elasticity are decreased with increasing the content of recycled aggregate. Accordingly, these recycled aggregate concrete can be used for high strength concrete.

  • PDF

Durability Characteristics of Concrete Incorporating Waste Foundry Sand (폐주물사를 혼입한 콘크리트의 내구특성에 관한 연구)

  • Park, Je-Seon;Yun, Kyong-Ku;Lee, Joo-Hyung;Yong, Sok-Ung
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.227-232
    • /
    • 1997
  • This study was conducted to evaluate durability of concrete which are increasingly demanded recently. Concrete durability properties incorporating waste foundry sand was performed with the variable of W/C ratio, Sand/Waste foundry sand ratio and Air entrainment-Non air entrainment. Cylinder specimens were made and subjected to freezing and thawing cycle at $-18^{\circ}C$ and $4^{\circ}C$. Dynamic modulus of elasticity were evaluated as F/T cycle increase. The results show that decreasing W/C ratio and AE concrete makes improved resistance of freezing and thawing improved. Especially, resistance of freezing and thawing is improved by Fine aggregate/Waste foundry sand ratio which is 50%, 25%, 0% in a row.

  • PDF

An Experimental Study on Freezing and Thawing Resistance of Rice Straw Ash Concrete (볏짚재 콘크리트의 동결융해 저항성에 관한 실험적 연구)

  • 김영익;성찬용;김경태;서대석;남기성
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.161-166
    • /
    • 1998
  • This experiment was on purpose to estimate freezing and thawing resistance concering with developing rice straw ash concrete which were mixed rice straw ash to cement as ratio of cement weight. Freezing and thawing test was done by Method A of KS F 2456. It could estimate change of original mass, pulse velocity and dynamic modulus of elasticity during test. Test results showed that 5% filled rice straw ash concrete had the highest durability factor(DF) as 86 and from 5% to 7.5% filled rice straw ash concrete showed higher DF than normal cement concrete.

  • PDF

Engineering Properties of Cement Mortar with Hwangtoh and Fly Ash (생황토와 플라이 애시를 혼입한 시멘트 모르타르의 공학적 특성)

  • Im, Sung-Soo;Sung, Chan-Yong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.395-398
    • /
    • 2003
  • This study is performed to evaluate the engineering properties of cement mortar with hwangtoh and fly ash The absorption ratio is in the range of $5.22{\sim}13.16%\;and\;8.53{\sim}13.29%$ at the curing age 14 and 28 days, respectively. The compressive strength is in the range of $92{\sim}458kgf/cm^2\;and\;88{\sim}316kgf/cm^2$ in water and dry cruing at the curing age 28days, respectively. The bending strength and dynamic modulus of elasticity are shown in similar tendency in water and dry curing.

  • PDF

Characterization of Length change and Free-Thaw Resistance of Recycled Aggregate Concrete (재생골재콘크리트의 길이변화 및 동결융해 저항성에 대한 실험적 특성 고찰)

  • Sim, Jong-Sung;Park, Cheol-Woo;Park, Sung-Jae;Kim, Kil-Jung;Kim, Tae-Gwang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.109-112
    • /
    • 2006
  • Social and environmental pressures draw greater significance on the recycling of the waste. Particularly, waste concrete is particularly crucial among the construction wastes in terms of conservation of natural construction resources as well as disposal crisis. The technology to recycle the waste concrete has been improved. This study has various replacement levels of natural fine aggregate with recycled fine aggregate while coarse aggregate is completely replaced with the recycled coarse aggregate and herein fundamental properties investigated include compressive strength, shrinkage and dynamic modulus of elasticity. As a result, it is anticipated that the recycled aggregate concrete can be successfully applied to structural concrete members provided a proper recycling process, mix design and curing method are practiced.

  • PDF

Effects of water-cement ratio on the freeze thaw resistance of fly ash concrete (물시멘트비에 따른 플라이애시 콘크리트의 동결융해 저항성에 관한 연구)

  • Kim, Do-Gyum;Lee, Jang-Hwa;Lee, Ho-Jae;Kim, Jae-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.211-212
    • /
    • 2010
  • This study is aimed to investigate effects of water-cement ratio on the freeze thaw resistance of fly ash concrete. Assess the effects of physical properties of fly ash concrete by measure the length change, weight change, dynamic modulus of elasticity.

  • PDF