• Title/Summary/Keyword: Dynamic Modulus of Elasticity

Search Result 197, Processing Time 0.024 seconds

Rebar corrosion effects on structural behavior of buildings

  • Yuksel, Isa
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1111-1133
    • /
    • 2015
  • Rebar corrosion in concrete is one of the main causes of reduction of service life of reinforced concrete buildings. This paper presents the influence of rebar corrosion on the structural behavior of reinforced concrete (RC) buildings subjected to strong earthquake ground motion. Different levels of rebar corrosion scenarios were applied on a typical four story RC frame. The deteriorated conditions as a result of these scenarios include loss in cross-sectional area and loss of mechanical properties of the reinforcement bars, loss in bond strength, and loss in concrete strength and its modulus of elasticity. Dynamic analyses of the frame with different corrosion scenarios are performed with selected strong earthquake ground motion records. The influences of degradation in both concrete and reinforcement on structural behavior are investigated by comparing the various parameters of the frame under different corrosion scenarios with respect to each other. The results show that the progressive deterioration of the frame due to rebar corrosion causes serious structural behavior changes such as change in failure mode. The intensity, propagation time, and extensity of rebar corrosion have very important effects on the level of degradation of steel and concrete, as well as on the earthquake behavior of the structure.

Effect of Fiber Hybridization on Durability Related Properties of Ultra-High Performance Concrete

  • Smarzewski, Piotr;Barnat-Hunek, Danuta
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.315-325
    • /
    • 2017
  • The purpose of the paper is to determine the influence of two widely used steel fibers and polypropylene fibers on the sulphate crystallization resistance, freeze-thaw resistance and surface wettability of ultra-high performance concrete (UHPC). Tests were carried out on cubes and cylinders of plain UHPC and fiber reinforced UHPC with varying contents ranging from 0.25 to 1% steel fibers and/or polypropylene fibers. Extensive data from the salt resistance test, frost resistance test, dynamic modulus of elasticity test before and after freezing-thawing, as well as the contact angle test were recorded and analyzed. Fiber hybridization relatively increased the resistance to salt crystallization and freeze-thaw resistance of UHPC in comparison with a single type of fiber in UHPC at the same fiber volume fraction. The experimental results indicate that hybrid fibers can significantly improve the adhesion properties and reduce the wettability of the UHPC surface.

A Fundamental Study on the Workability Improvement and Strength Properties of Superplasticized Concrete(II) (Part 2, In the Case of Strength Properties of Hardened Concrete) (유동화 콘크리트의 시공성 향상 및 강도특성에 관한 기초적 연구(II) (제2보, 경화콘크리트의 강도 특성을 중심으로))

  • 김무한;권영진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1989.10a
    • /
    • pp.21-24
    • /
    • 1989
  • The effect of superplasticizing agents on the mechanical properties in hardened concrete have been analyzed and investigated under various mix proportions of water cement ratio of 0.40, 0.50, 0.60 and 0.70, Superplasticizing agents of NL-4000, and Rheobuild-716, and addition rate of sp. agents of 0.0, 0.5, 1.0, 1.5 and 2.0 in the practical range. It is the aim of this study to provide the fundamental data on the compressive strength, dynamic and static modulus of elasticity, stress and strain curve of hardened concrete comparing with base concrete and conventional concrete for the practical use and research data accumulation of superplasticized concrete in the side of development of concrete construction technology and management.

  • PDF

Fire Resistance Test of Steel Fiber Reinforced Concrete (강섬유보강콘크리트의 내화성에 관한일실험)

  • 윤재환
    • Fire Science and Engineering
    • /
    • v.1 no.1
    • /
    • pp.19-26
    • /
    • 1987
  • In this study, fire resistance of steel fiber reinforced concrete was investigated Cylindrical and prismatic specimens made of Ordinary Portland Cement plain concrete and steel fiber reinforced concrete were exposed to heating in accordance with a standard time-temperature curve as specified in KS·F22 57, method of fire resistance test for structural parts of buildings, the period of heating was 1 hour and 2 hours. After the fire resistance test, mechanical properties of specimens such as compressive and bending strength, stress-strain curve, static and dynamic modulus of elasticity and bending toughness were investigated. Also the cracks and spallings of the specimens were observed. From the test results, it was confirmed that steel fiber reinforced concrete has a excellent fire resistance than plain concrete in the view of higher residual strength of concrete and smaller crackings because of steel fibers in concrete.

  • PDF

Elastic Properties of Rice Straw Ash Concrete (볏짚재 콘크리트의 탄성 특성)

  • 김영익;민정기;조일호;김경태;성찬용
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.324-329
    • /
    • 1999
  • This study is performed to evaluate an elastic properties of rice straw ash concrete . The following conclusions are drawn ; The ultrasonic pulse velocity is in the range of 4.084 ∼4.336㎧, which has showed abuot the same compared to that of the normal cement concrete. The highest ultrasonic pulse velocity is showed by 5% rice straw ash filled reice straw ash concrete. The dynamic and static modulus of elasticity i sin the range of 294 ${\times}$103 ∼ 347 ${\times}$103 and 266${\times}$ 103 ∼347${\times}$ 103 kgf/$\textrm{cm}^2$ , respectively. It is showed about the same compared to that of the normla cement concrete. The poisson's number of rice straw ash concrete is less than that of the normal cement concrete . The stress-strain curve of concrete which is contained rice straw ash within 10% appear slowly and over 10% appear almost straightly.

  • PDF

Experimental Study on physical and Mechanical Properties of Concrete with Fly Ash (플라이 애시를 혼입한 콘크리트의 물리.역학적 특성에 관한 실험적 연구)

  • 성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.3
    • /
    • pp.107-113
    • /
    • 2000
  • This study is performed to examine the physical and mechanical properties of concrete with fly ash. Test results show that the unit weights of concrete with fly ash are decreased 1-3% and the highest strength is achieved by 10% filled fly ash concrete with it is increased 7% than that of the normal cement concrete. the ultrasonic pulse velocity is in the range of 3.705~4.204m/s and the dynamic and static modulus of elasticity is in the range of 271$\times$103 ~289$\times$103kgf/cm2 and 208$\times$103 ~262$\times$103kgf/cm2 respectively. The acid-resistance is increased with increase of the content of fly ash. It is 1.2 times of the normal cement concrete by 10% filled fly ash concrete and 1.7 times by 30% filled fly ash concrete respectively.

  • PDF

Elaboration and characterization of fiber-reinforced self-consolidating repair mortar containing natural perlite powder

  • Benyahia, A.;Ghrici, M.;Mansour, M. Said;Omran, A.
    • Advances in concrete construction
    • /
    • v.5 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • This research project aimed at evaluating experimentally the effect of natural perlite powder as an alternative supplementary cementing material (SCM) on the performance of fiber reinforced self-consolidating repair mortars (FR-SCRMs). For this purpose, four FR-SCRMs mixes incorporating 0%, 10%, 20%, and 30% of natural perlite powder as cement replacements were prepared. The evaluation was based on fresh (slump flow, flow time, and unit weight), hardened (air-dry unit weight, compressive and flexural strengths, dynamic modulus of elasticity), and durability (water absorption test) performances. The results reveal that structural repair mortars confronting the performance requirements of class R4 materials (European Standard EN 1504-3) could be designed using 10%, 20%, and 30% of perlite powder as cement substitutions. Bonding results between repair mortars containing perlite powder and old concrete substrate investigated by the slant shear test showed good interlocking justifying the effectiveness of these produced mortars.

Freeze-Thaw Resistance of Blended Cement Concrete using Seawater (해수를 사용한 혼합시멘트계 콘크리트의 동결융해 저항성)

  • 문한영;김성수;이승태;김종필;박광필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.725-730
    • /
    • 2002
  • The durability of concrete involves resistance to freeze-thaw action, corrosion, permeation, carbonation, chemical attack and so on. Generally, properties of concrete have been well understood under the separate action of these deterioration mechanisms. However, in practice, the degradation of concrete usually is the result of combined action of physical and chemical attack and can be accelerated by the combined action of several deterioration mechanisms. In the present study, to evaluate the combined deterioration by freeze-thaw action and seawater attack, ground granulated blast-furnace slag or silica fume concrete with water or seawater as mixing water was exposed to 210 cycles of freeze-thaw action. Tests were conducted to determined the relative dynamic modulus of elasticity and compressive strength. Furthermore, The XRD, SEM and EDS analysis were performed on the deteriorated part of concrete due to freeze-thaw action and seawater attack.

  • PDF

Reliability analysis of uncertain structures using earthquake response spectra

  • Moustafa, Abbas;Mahadevan, Sankaran
    • Earthquakes and Structures
    • /
    • v.2 no.3
    • /
    • pp.279-295
    • /
    • 2011
  • This paper develops a probabilistic methodology for the seismic reliability analysis of structures with random properties. The earthquake loading is assumed to be described in terms of response spectra. The proposed methodology takes advantage of the response spectra and thus does not require explicit dynamic analysis of the actual structure. Uncertainties in the structural properties (e.g. member cross-sections, modulus of elasticity, member strengths, mass and damping) as well as in the seismic load (due to uncertainty associated with the earthquake load specification) are considered. The structural reliability is estimated by determining the failure probability or the reliability index associated with a performance function that defines safe and unsafe domains. The structural failure is estimated using a performance function that evaluates whether the maximum displacement has been exceeded. Numerical illustrations of reliability analysis of elastic and elastic-plastic single-story frame structures are presented first. The extension of the proposed method to elastic multi-degree-of-freedom uncertain structures is also studied and a solved example is provided.

A consistent FEM-Vlasov model for laminated orthotropic beams subjected to moving load

  • Ozgan, Korhan
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.23-31
    • /
    • 2017
  • In the study, dynamic behavior of laminated orthotropic beams on elastic foundation is investigated. Consistent model presented here combines the finite element solution of the system with SAP2000 software and the calculation of soil parameters with MATLAB software using Modified Vlasov Model type elastic foundation. For this purpose, a computing tool is coded in MATLAB which employs Open Application Programming Interface (OAPI) feature of SAP2000 to provide two-way data flow during execution. Firstly, an example is taken from the literature to demonstrate the accuracy of the consistent FEM-Vlasov Model. Subsequently, the effects of boundary conditions, subsoil depth, elasticity modulus of subsoil, slenderness ratio, velocity of moving load and lamination scheme on the behavior of laminated orthotropic beams on elastic foundation are investigated on a new numerical example. It can be concluded that it is really convenient to use OAPI feature of SAP2000 to model this complex behavior of laminated orthotropic beams on elastic foundation under moving load.