• Title/Summary/Keyword: Dynamic Modulus of Elasticity

Search Result 197, Processing Time 0.026 seconds

A Experimental Study on Application of KS F 2456 using Shear Wave (급속 동결 융해에 대한 콘크리트의 저항 시험방법(KS F 2456)에 전단파 적용을 위한 실험적 연구)

  • An, Ji-Hwan;Jeon, Sung-Il;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.57-65
    • /
    • 2012
  • PURPOSES: It is important to consider the long-term performance of concrete pavement, because concrete pavement is more exposed to the various environmental conditions than any other concrete structures. One of the several methods to evaluate the long-term performance of concrete during winter is KS F 2456. Relative dynamic modulus of elasticity shows the resistance to freezing and thawing. METHODS: To measure relative dynamic modulus of elasticity, ultra sonic is generally used. But in this study, to measure the relative dynamic modulus of elasticity, both ultra sonic and shear wave were used and then compared each other. RESULTS: The results from the measurement by ultrasonic wave and shear wave were divided into three types. Type 1 : Specimens are good and relative dynamic modulus of elasticity did not decrease until 300 cycle. Type 2 : The relative dynamic modulus of elasticity decreased from the late cycle.(about 150 cycle later) Type 3 : The relative dynamic modulus of elasticity consistently decreased from the beginning. As a result of ANOVA, there is no difference according to measuring method, in type 2 and 3. But there is a difference according to measuring method, in type 1's relative dynamic modulus of elasticity. CONCLUSIONS: It is proved that shear wave can be used to understand the damage tendency of relative freezing and thawing and to measure the relative dynamic modulus of elasticity.

Nondestructive Bending Strength Evaluation of Woodceramics Made from Woody Part of Broussonetia Kazinoki Sieb. - Effect of Resin Impregnation Ratio -

  • Byeon, Hee-Seop;Kim, Jae-Min;Won, Kyung-Rok;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.398-405
    • /
    • 2011
  • Nondestructive evaluation (NDE) technique method using a resonance frequency mode was carried out for woodceramics made by different phenol resin impregnation ratios (40, 50, 60, 70%) for Broussonetia Kazinoki Sieb. Dynamic modulus of elasticity increased with increasing resin impregnation ratios. There was a close relationship between dynamic modulus of elasticity and static bending modulus of elasticity and between dynamic modulus of elasticity and MOR and between static bending modulus of elasticity and MOR. Therefore, the dynamic modulus of elasticity using resonance frequency mode is useful as a nondestructive evaluation method for predicting the MOR of woodceramics made by different impregnation ratios.

Dynamic MOE and Internal Friction of Compression Woods in Pinus densiflora (소나무 압축응력재(壓縮應力材)의 동(動) 탄성율(彈性率)과 내부마찰(內部摩擦))

  • Hong, Byung-Wha;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.32-36
    • /
    • 1995
  • A study was conducted to evaluate the dynamic mechanical properties (modulus of elasticity, resonant frequency and interanal friction) of compression wood in Pinus densiflora. Vibration method was used for estimation of dynamic modulus of elasticity and the values were compared to those of static bending modulus of elasticity. The results obtained are as follows: 1. The dynamic modulus of elasticity of compression wood decreased, whereas that of normal wood increased, with increasing specific gravity. 2. The resonant frequency of compression wood decreased, whereas that of normal wood increased, with increasing specific gravity. 3. The internal friction of compression wood increased with increasing specific gravity. 4. The correlation coefficients between dynamic and static moduli of elasticity in compression and normal woods were high.

  • PDF

A study on dynamic modulus of self-consolidating rubberized concrete

  • Emiroglu, Mehmet;Yildiz, Servet;Kelestemur, M. Halidun
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.795-805
    • /
    • 2015
  • In this study, dynamic modulus of elasticity of self-consolidating rubberized concrete is evaluated by using results of ultrasonic pulse velocity and resonance frequency tests. Additionally, correlation between dynamic modulus of elasticity and compressive strength results is compared. For evaluating the dynamic modulus of elasticity of self-consolidating rubberized concrete, prismatic specimens having $100{\times}100{\times}500$ mm dimensions are prepared. Dynamic modulus of elasticity values obtained by non-destructive measurements techniques are well agreed with those given in the literature.

Nondestructive Evaluation of Strength Performance for Heat-Treated Wood Using Impact Hammer & Transducer

  • Won, Kyung-Rok;Chong, Song-Ho;Hong, Nam-Euy;Kang, Sang-Uk;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.466-473
    • /
    • 2013
  • Nondestructive evaluation (NDE) technique method using a resonance frequency mode was carried out for heat-treated wood under different conditions. The effect of heat treatment on the bending strength and NDE technique using the resonance frequency by impact hammer and force transducer mode for Korean paulownia, Pinus densiflora, Lidiodendron tulipifera and Betula costata were measured. The heat treatment temperature has been investigated at $175^{\circ}C$ and $200^{\circ}C$, respectively. There were a close relationship of dynamic modulus of elasticity and static bending modulus of elasticity to MOR. In all conditions, It was found that there were a high correlation at 1% level between dynamic modulus of elasticity and MOR, and static modulus of elasticity and MOR. However, the result indicated that correlation coefficient is higher in dynamic modulus of elasticity to MOR than that in static modulus of elasticity to MOR. Therefore, the dynamic modulus of elasticity using resonance frequency by impact hammer mode is more useful as a nondestructive evaluation method for predicting the MOR of heat-treated wood under different temperature and species conditions.

Effect of Curing Conditions on the ASR of Lightweight Aggregate Concrete (양생조건이 경량골재 콘크리트의 ASR에 미치는 영향)

  • 성찬용;김성완;민정기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.4
    • /
    • pp.38-46
    • /
    • 1993
  • This study is to analyze effect of exposure environment and mode of ASR on the engineering properties of synthetic lightweight aggregate concrete, such as dynamic modulus of elasticity and ultrasonic pulse velocity. The results of this study are summarized as foflows ; 1. The expansion rate of each exposure environment in 380$^{\circ}$C and NaCI 4% solution was shown higher than in 20$^{\circ}$C and normal water. The expansion rate of each exposure mode was largely shown in order of fjill immersion, wetting/drying, half immersion. 2. The dynamic modulus of elasticty and ultrasonic pulse velocity of each exposure environment in 38$^{\circ}$C and NaCl 4% solution was shown less than in 20$^{\circ}$C and normal water. The dynamic modulus of elasticity and ultrasonic pulse velocity of each exposure mode was shown smaller in order of full immersion, wetting/drying, half imersion.3. The relation between dynamic modulus of elasticity and ultrasonic pulse velocity was highly significant. The dynamic modulus of elasticity was increased with increase of ultrasonic pulse velocity. The decreasing rate of the dynamic modulus of elasticity was shown 2.1~3.4 times higher than the ultrasonic pulse velocity at each age, exposure environment and mode, respectively. 4. The expansion of each exposure environment and mode was increased with increase of curing age. The dynamic modulus of elasticity and ultrasonic pulse velocity of those concrete was increased with increase of curing age. At the curing age 28 days, the highest properties was showed at each type concrete, it was gradually decreased with increase of curing age. Specially, at the curing age 98 days of full immersion, the rate of expansion of type D was shown 3.95 times higher than the type A. But the dynamic modulus of elasticity and ultrasonic pulse velocity was decreased 17% and 8.3%.

  • PDF

Dynamic Viscoelasticity of Hot Pressed Wood (열압재목재(熱壓縡木材)의 동적점탄성(動的粘彈性))

  • Hong, Byung-Wha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.3-10
    • /
    • 1984
  • In hot pressed wood of Pseudotsuga menziesii compressed to 0 - 50 percent at temperature 60 - $180^{\circ}C$, relative humidity conditions affecting dynamic Young's modulus of elasticity and internal friction were investigated. The results obtained are summarized as follows: Moisture absorption of the hot pressed wood decreased with increasing press temperature, but there was no effect on the amount of compression. Thickness swelling dereased with increasing press temperature, and increased with increasing amount of compression. In general, dynamic Young's modulus of elasticity showed a straight line with increasing specific gravity of specimens. Dynamic Young's modulus of elasticity decreased with increasing moisture content, but internal friction increased with increasing amount of moisture content. Dynamic Young's modulus of R specimens pressed in the radial direction showed hight values than T specimens pressed in the tangential direction.

  • PDF

Nondestructive Bending Strength Evaluation of Ceramics Made from Miscanthus sinensis var. purpurascens Particle Boards - Effect of Resin Impregnation Ratio -

  • Byeon, Hee-Seop;Won, Kyung-Rok;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.130-137
    • /
    • 2014
  • Nondestructive evaluation (NDE) method by using a resonance frequency mode was carried out for ceramics made from particle boards with different phenol resin impregnation ratios (30, 40, 50, 60%) at carbonizing temperature of $800^{\circ}C$. The material for ceramics was Miscanthus sinensis var. purpurascens board. Dynamic modulus of elasticity increased with increasing impregnation ratio. There was a close relationship of dynamic modulus of elasticity and static bending modulus of elasticity to modulus of rupture (MOR). However, the result indicated that correlation coefficient is higher in dynamic modulus of elasticity to MOR than that in static modulus of elasticity to MOR. Therefore, the dynamic modulus of elasticity using resonance frequency by free vibration mode is more useful as a nondestructive evaluation method for predicting the MOR of ceramics made from Miscanthus sinensis var. purpurascens particle boards by different phenol resin impregnation ratios.

Nondestructive Bending Strength Evaluation of Miscanthus sinensis var. purpurascens Ceramics Made from Different Carbonizing Temperatures (탄화온도별로 제조된 거대억새 세라믹의 비파괴 휨강도 평가)

  • Won, Kyung-Rok;Oh, Seung-Won;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.723-731
    • /
    • 2014
  • Nondestructive evaluation (NDE) technique method using a resonance frequency mode was carried out for ceramics made by different carbonizing temperatures (600, 800, 1000, $1200^{\circ}C$) after impregnating the phenol resin with Miscanthus sinensis var. purpurascen particle boards. Dynamic modulus of elasticity increased with increasing carbonizing temperature. There were a close relationship of dynamic modulus of elasticity and static bending modulus of elasticity to modulus of rupture (MOR). However, the result indicated that correlation coefficient was higher in dynamic modulus of elasticity to MOR than that in static modulus of elasticity to MOR. Therefore, the dynamic modulus of elasticity using resonance frequency by free vibration mode is more useful as a nondestructive evaluation method for predicting the MOR of ceramics made by different carbonizing temperature for Miscanthus sinensis var. purpurascens particle boards.

Prediction and Application of the Dynamic Modulus of Elasticity of Concrete Using the Wavelet Analysis (웨이블릿 해석을 이용한 콘크리트의 동탄성계수 추정 및 응용)

  • Jung, Beom-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.843-850
    • /
    • 2010
  • The dynamic modulus of elasticity of concrete can be determined nondestructively using impact echo test as prescribed in KS F 2437. The fundamental longitudinal frequency of the concrete cylinders with free-free boundary condition was estimated by the wavelet transform theory. The advantage of the wavelet transform over either a pure spectral or temporal decomposition of the signal is that the features of the pertinent signals can be characterized in the time-frequency plane. For the concrete mix design utilized in this study, no significant difference between the dynamic and the static moduli of elasticity was observed. This was contrary to the perceived general notion of having the dynamic modulus considerably higher than the static modulus. It has been shown that the modulus from static and dynamic by impact echo test are comparable to each other fairly well, when the effect of strain level was properly taken into account. In this experimental test, it was shown that the dynamic modulus is approximately equal to the tangent modulus at $1{\times}10^{-4}$ strain level.