• 제목/요약/키워드: Dynamic Mesh Technique

검색결과 66건 처리시간 0.023초

주철 FC200을 이용한 하중점에 따른 동적파괴경로 예측 연구 (Study on Dynamic Fracture Path Prediction According to Load Point using Cast Iron FC200)

  • 유직수;조규춘
    • 한국산업융합학회 논문집
    • /
    • 제27권4_2호
    • /
    • pp.973-980
    • /
    • 2024
  • Dependence of dynamic fracture path on loading velocity was observed from experimental results based on the three point bending fracture in cast iron. In this study, 3D and 2D numerical simulations are used to evaluate singular stress fields near crack tip and fracture mechanics parameters. Moving finite element technique, 2D and 3D Delauney automatic mesh generation and contact-noncontact evaluation is introduced into the numerical method. Dynamic fracture thoughness is decreased with increase of impact loading velocity. Fracture mode-ratio corresponds to initial kink angle of fracture path. The numerical result shows that the maximum hoop stress criterion cannot be applied to dynamic fracture of cast iron.

Trust Based Authentication and Key Establishment for Secure Routing in WMN

  • Akilarasu, G.;Shalinie, S. Mercy
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권12호
    • /
    • pp.4661-4676
    • /
    • 2014
  • In Wireless Mesh Networks (WMN), an authentication technique can be compromised due to the distributed network architecture, the broadcast nature of the wireless medium and dynamic network topology. Several vulnerabilities exist in different protocols for WMNs. Hence, in this paper, we propose trust based authentication and key establishment for secure routing in WMN. Initially, a trust model is designed based on Ant Colony Optimization (ACO) to exchange the trust information among the nodes. The routing table is utilized to select the destination nodes, for which the link information is updated and the route verification is performed. Based on the trust model, mutual authentication is applied. When a node moves from one operator to another for accessing the router, inter-authentication will be performed. When a node moves within the operator for accessing the router, then intra-authentication will be performed. During authentication, keys are established using identity based cryptography technique. By simulation results, we show that the proposed technique enhances the packet delivery ratio and resilience with reduced drop and overhead.

An efficient finite element modeling of dynamic crack propagation using a moving node element

  • Kwon, Y.W.;Christy, C.
    • Structural Engineering and Mechanics
    • /
    • 제2권2호
    • /
    • pp.173-184
    • /
    • 1994
  • The objective of this study was to develop a simple and efficient numerical modeling technique for dynamic crack propagation using the finite element method. The study focused on the analysis of a rapidly propagation crack in an elastic body. As already known, discrete crack tip advance with the stationary node procedure results in spurious oscillation in the calculated energy terms. To reduce the spurious oscillation, a simple and efficient moving node procedure is proposed. The procedure does require neither remeshing the discretization nor distorting the original mesh. Two different central difference schemes are also evaluated and compared for dynamic crack propagation problem.

Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model

  • Rad, Mohammad Hossein Ghadiri;Shahabian, Farzad;Hosseini, Seyed Mahmoud
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.77-92
    • /
    • 2020
  • The present paper outlined a procedure for geometrically nonlinear dynamic analysis of functionally graded graphene platelets-reinforced (GPLR-FG) nanocomposite cylinder subjected to mechanical shock loading. The governing equation of motion for large deformation problems is derived using meshless local Petrov-Galerkin (MLPG) method based on total lagrangian approach. In the MLPG method, the radial point interpolation technique is employed to construct the shape functions. A micromechanical model based on the Halpin-Tsai model and rule of mixture is used for formulation the nonlinear functionally graded distribution of GPLs in polymer matrix of composites. Energy dissipation in analyses of the structure responding to dynamic loads is considered using the Rayleigh damping. The Newmark-Newton/Raphson method which is an incremental-iterative approach is implemented to solve the nonlinear dynamic equations. The results of the proposed method for homogenous material are compared with the finite element ones. A very good agreement is achieved between the MLPG and FEM with very fine meshing. In addition, the results have demonstrated that the MLPG method is more effective method compared with the FEM for very large deformation problems due to avoiding mesh distortion issues. Finally, the effect of GPLs distribution on strength, stiffness and dynamic characteristics of the cylinder are discussed in details. The obtained results show that the distribution of GPLs changed the mechanical properties, so a classification of different types and volume fraction exponent is established. Indeed by comparing the obtained results, the best compromise of nanocomposite cylinder is determined in terms of mechanical and dynamic properties for different load patterns. All these applications have shown that the present MLPG method is very effective for geometrically nonlinear analyses of GPLR-FG nanocomposite cylinder because of vanishing mesh distortion issue in large deformation problems. In addition, since in proposed method the distributed nodes are used for discretization the problem domain (rather than the meshing), modeling the functionally graded media yields to more accurate results.

낮은 분압의 VOCs의 흡착에 관한 연구 (A Study on VOCS Adsorption at Low Pressure)

  • 송헌택;강성원;민병훈;서성섭
    • 청정기술
    • /
    • 제9권4호
    • /
    • pp.153-161
    • /
    • 2003
  • 벤젠과 톨루엔을 활성탄에 흡착하는 공정을 개발하기 위한 기초 실험을 수행하였다. 정적흡착실험은 온도와 압력의 변화에 따른 벤젠과 톨루엔의 흡착특성을 연구하였다. 흡착제로는 활성탄 12~20mesh와 20~40mesh를 사용하였으며 흡착질로는 벤젠, 톨루엔, 질소를 사용하였다. 실험결과는 Langmuir isotherm으로 fittimg하였고, 온도의존성을 계산하였고, 흡착열과 흡착상수를 얻었다. 이성분 정적흡착실험에서는 Langmuir isotherm parameter들이 Extended Langmuir isotherm에 일반적으로 적용할 수 있는 지를 확인하였다. 이때 사용한 실험기법은 기존의 방법에서처럼 흡착 전후의 기상의 몰분율을 측정하여 실험하는 방법이 아닌 압력변화반을 측정하는 정용적법에 기초한 방법을 사용하였다. 동적흡착실험올 수행하여 실험결과를 전사모사로부터 얻어진 결과와 비교하였다. 본 연구에서는 공정에서 흡착조건을 결정할 수 있는 기본 데이터를 획득할 수 있었다.

  • PDF

해저지반 성질과 매설깊이 변화에 따른 해저파이프의 충돌 특성 (Impact Characteristics of Subsea Pipeline Considering Seabed Properties and Burial Depth)

  • 신문범;서영교
    • 한국해양공학회지
    • /
    • 제31권3호
    • /
    • pp.219-226
    • /
    • 2017
  • In this study, the impact characteristics of subsea pipelines that were installed in various soil types and burial depths were evaluated by a numerical method. An impact scenario replicated a dropped ship anchor that fell vertically and impacted an installed subsea pipeline. In order to calculate the impact force through terminal velocity, FLUENT, a computational fluid dynamic program and MDM (Moving Deforming Mesh) technique were applied. Next, a dynamic finite element program, ANSYS Explicit Dynamics, was used for impact analysis between the anchor and pipeline (or, subsea if they were buried). Three soil types were considered: loose sand, dense sand and soft clay by applying the Mohr-coulomb model to the seabed. The buried depth was assumed to be 0 m, 1 m and 2 m. In conclusion, a subsea pipeline was the most stable when buried in dense sand at a depth of 2 m to prevent impact damage.

루츠식 진공 펌프의 유동 및 부산물 입자 궤적에 대한 해석 (Analysis on the Flow and the Byproduct Particle Trajectory of Roots Type Vacuum Pump)

  • 이찬;길현권;노명근
    • 한국유체기계학회 논문집
    • /
    • 제14권5호
    • /
    • pp.18-23
    • /
    • 2011
  • A CFD analysis method is developed and applied for investigating the gas flow and the byproduct particle trajectory in Roots type vacuum pump. The internal fluid flow and thermal fields between the rotors and the housing of vacuum pump are analyzed by using the dynamic mesh, the numerical methods for unsteady 2-D Navier-Stokes equation and the standard k-$\varepsilon$ turbulence model of the Fluent code. Coupled with the flow simulation results, the particle trajectory of the byproduct flowing into the pump with gas stream is analyzed by using discrete phase modeling technique. The CFD analysis results show the pressure, the velocity and the temperature distributions in pump change abruptly due to the rotation of rotors, and back flows are produced due to the strong reverse pressure gradients at rotor/rotor and rotor/housing clearances. The predicted byproduct particle trajectory results also show the particles impinge on the clearance surfaces between the housing and the rotor of pump and then may form the deposit layer causing the failure of pump.

Steam Explosion Module Development for the MELCOR Code Using TEXAS-V

  • Park I.K.;Kim D.H.;Song J.H.
    • Nuclear Engineering and Technology
    • /
    • 제35권4호
    • /
    • pp.286-298
    • /
    • 2003
  • A steam explosion module, STX, has been developed using the mechanistic steam explosion analysis code, TEXAS-V, in order to estimate the dynamic load with steam explosion by implementing the module to the integrated safety analysis code, MELCOR. One of the difficulties in using mechanistic steam explosion codes is that they do not have any obvious criteria for defining some uncertain parameters such as triggering timing, triggering magnitude, mesh axial length and mesh cross-sectional area. These parameters have been user decision parts in the past. Steam explosion sample calculations and sensitivity studies on uncertain parameters were conducted to investigate those uncertain parameters. The TEXAS-V simulations were summarized in the format of a look-up table and a linear interpolation technique was adopted to calculate the steam explosion load between the data points in the table. The STX-module merged with MELCOR showed the same results as the original MELCOR and additionally it could estimate the steam explosion load in the reactor cavity.

회전로터 및 후류 동하중을 고려한 스마트 무인기 천이응답해석 (Transient Response Analysis for a Smart UAV Considering Dynamic Loads by Rotating Rotor and Wakes)

  • 김현정;오세원;김성준;최익현;김태욱;이상욱;김진원;이정진;김동현
    • 한국소음진동공학회논문집
    • /
    • 제16권9호
    • /
    • pp.926-936
    • /
    • 2006
  • In this study, structural vibration analyses of a smart unmanned aerial vehicle (UAV) have been conducted considering dynamic loads generated by rotating rotor and wakes. The present UAV (TR-S5-03) finite element model is constructed as a full three-dimensional configuration with different fuel conditions and tilting angles for helicopter, transition and airplane flight modes. Practical computational procedure for modal transient response analysis (MTRA) is established using general purpose finite element method (FEM) and computational fluid dynamics (CFD) technique. The dynamic loads generated by rotating blades in the transient and forward flight conditions are calculated by unsteady CFD technique with sliding mesh concept. As the results of present study, transient structural displacements and accelerations are presented in detail. In addition, vibration characteristics of structural parts and installed equipments are investigated for different fuel conditions and tilting angles.

회전로터 및 후류 동하중을 고려한 스마트 무인기 천이응답해석 (Transient Response Analysis for a Smart UAV Considering Dynamic Loads by Rotating Rotor and Wakes)

  • 김현정;김동현;오세원;김성준;최익현;김태욱;이상욱;김진원;이정진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.367-375
    • /
    • 2006
  • In this study, structural vibration analyses of a smart unmanned aerial vehicle (UAV) have been conducted considering dynamic loads generated by rotating rotor and wakes. The present UAV (TR-S5-03) finite element model is constructed as a full three-dimensional configuration with different fuel conditions and tilting angles for helicopter, transition and airplane flight modes. Practical computational procedure for modal transient response analysis (MTRA) is established. using general purpose finite element method (FEM) and computational fluid dynamics (CFD) technique. The dynamic loads generated by rotating blades in the transient and forward flight conditions are calculated by unsteady CFD technique with sliding mesh concept. As the results of present study, transient structural displacements and accelerations are presented in detail. In addition, vibration characteristics of structural parts and installed equipments are investigated for different fuel conditions and tilting angles.

  • PDF