• Title/Summary/Keyword: Dynamic MTF

Search Result 12, Processing Time 0.019 seconds

MTF measuring method of TDI camera electronics

  • Kim, Young-Sun;Kong, Jong-Pil;Heo, Haeng-Pal;Park, Jong-Euk;Yong, Sang-Soon;Choi, Hae-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.540-543
    • /
    • 2007
  • The modulation transfer function (MTF) in a camera system is a measurement of how well the system will faithfully reproduce the original scene. The electro-optical camera system consists of optics, an array of pixels, and an electronics which is related to the image signal chain. The system MTF can be cascaded with each element's MTF in the frequency domain. That is to say, the electronics MTF including the detector MTF can be recalculated easily by the acquired system MTF if the well-known test optics is used in the measuring process. A Time-Delay and Integration (TDI) detector can make a signal increase by taking multiple exposures of the same object and adding them. It can be considered the various methods to measure the MTF of the TDI camera system. This paper shows the actual and practical MTF measuring methods for the detector and electronics in the TDI camera. The several methods are described according to the scan direction as well as the TDI stages such as the single line mode and the multiple-lines mode. The measuring is performed in the in the static condition or dynamic condition to get the point spread function (PSF) or the line spread function (LSF). Especially, the dynamic test bench is used to simulate on track velocity to synchronize with TDI read out frequency for the dynamic movement.

  • PDF

Minimization of Motion Blur and Dynamic MTF Analysis in the Electro-Optical TDI CMOS Camera on a Satellite (TDI CMOS 센서를 이용한 인공위성 탑재용 전자광학 카메라의 Motion Blur 최소화 방법 및 Dynamic MTF 성능 분석)

  • Heo, HaengPal;Ra, SungWoong
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.85-99
    • /
    • 2015
  • TDI CCD sensors are being used for most of the electro-optical camera mounted on the low earth orbit satellite to meet high performance requirements such as SNR and MTF. However, the CMOS sensors which have a lot of implementation advantages over the CCD, are being upgraded to have the TDI function. A few methods for improving the issue of motion blur which is apparent in the CMOS sensor than the CCD sensor, are being introduced. Each pixel can be divided into a few sub-pixels to be read more than once as is the same case with three or four phased CCDs. The fill factor can be reduced intentionally or even a kind of mask can also be implemented at the edge of pixels to reduce the blur. The motion blur can also be reduced in the TDI CMOS sensor by reducing the integration time from the full line scan time. Because the integration time can be controlled easily by the versatile control electronics, one of two performance parameters, MTF and SNR, can be concentrated dynamically depending on the aim of target imaging. MATLAB simulation has been performed and the results are presented in this paper. The goal of the simulation is to compare dynamic MTFs affected by the different methods for reducing the motion blur in the TDI CMOS sensor.

A Study on Basic Modeling Method for MTF Analysis of Observation Satellites (관측위성의 MTF 해석을 위한 기본 모델링 기법 연구)

  • Kim, Do-Myung;Kim, Deok-Ryeol;Kim, Nak-Wan;Suk, Jin-Young;Kim, Hee-Seob;Kim, Gyu-Sun;Hyun, Young-Mok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.472-482
    • /
    • 2008
  • A modulation transfer function(MTF) tree is established to estimate the overall MTF of an observation satellite and to analyze the image performance. Basic MTF models relevant to each MTF tree component are represented as mathematical relationship between optics-structural dynamics, thermal deformation, attitude and dynamic characteristics of a satellite and the effects due to the space environment. The Basic MTF models consist of diffraction limited MTF with central obscuration, aberration, defocus, line-of-sight(LOS) jitter, linear motion, detector integration, and so forth. Performance estimation is demonstrated for a virtual earth-observation satellite in order to validate the constructed modeling method. The proposed models enable the system engineers to calculate the overall system MTF and to determine the crucial design parameters that affect the image performance in the conceptual design phase of an observation satellite.

Dynamic Modulation Transfer Function Analysis of Images Blurred by Sinusoidal Vibration

  • Du, Yanlu;Ding, Yalin;Xu, Yongsen;Sun, Chongshang
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.762-769
    • /
    • 2016
  • The dynamic modulation transfer function (MTF) for image degradation caused by sinusoidal vibration is formulated based on a Bessel function of the first kind. The presented method makes it possible to obtain an analytical MTF expression derived for arbitrary frequency sinusoidal vibration. The error obtained by the use of finite order sum approximations instead of infinite sums is investigated in detail. Dynamic MTF exhibits a stronger random behavior for low frequency vibration than high frequency vibration. The calculated MTFs agree well with the measured MTFs with the slant edge method in imaging experiments. With the proposed formula, allowable amplitudes of any frequency vibration are easily calculated. This is practical for the analysis and design of the line-of-sight stabilization system in the remote sensing camera.

Focal Length Measurement System for Camera Lens using the MTF (MTF 방법에 의한 카메라 렌즈 초점 자동 측정 시스템 개발)

  • 이석원;이동성;박희재;문호균;김영식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.264-270
    • /
    • 1996
  • In this paper, a computer automated system has been developed for measuring the focal length of camera lens using the MTF(Modurar Transfer Function) based on the signal processing around a line CCD and autocollimator. An optical Path for the focal length measurement system has been designed around thelight sourec, collimator, camera, mirror and the line CCD. The eyepiece of the collimator is replaced byline CCD, and the mirror is moved along the focal axis by a PC driven step motor. An efficient method has been designed for finding the optimum MTF value for the focal length based on the least squares approach. The developed system is fullycomputer automated: signal transmission to and from the camera, MTF evaluation based on the line CCD, step motor contorl, etc. The developed system has been applied to a practical camera manufacturing process and demonstrated its performance

  • PDF

Investigation of Radiation Effects on the Signal and Noise Characteristics in Digital Radiography (디지털 래디오그라피의 신호 및 잡음 특성에 대한 방사선 영향에 관한 연구)

  • Kim, Ho-Kyung;Cho, Min-Kook;Graeve, Thorsten
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.756-767
    • /
    • 2007
  • For the combination of phosphor screens having various thicknesses and a photodiode array manufactured by complementary metal-oxide-semiconductor (CMOS) process, we report the observation of image-quality degradation under the irradiation of 45-kVp spectrum x rays. The image quality was assessed in terms of dark pixel signal, dynamic range, modulation-transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). For the accumulation of the absorbed dose, the radiation-induced increase both in dark signal and noise resulted in the gradual reduction in dynamic range. While the MTF was only slightly affected by the total ionizing dose, the noise power in the case of $Min-R^{TM}$ screen, which is the thinnest one among the considered screens in this study, became larger as the total dose was increased. This is caused by incomplete correction of the dark current fixed-pattern noise. In addition, the increase tendency in NPS was independent of the spatial frequency. For the cascaded model analysis, the additional noise source is from direct absorption of x-ray photons. The change in NPS with respect to the total dose degrades the DQE. However, with carefully updated and applied correction, we can overcome the detrimental effects of increased dark current on NPS and DQE. This study gives an initial motivation that the periodic monitoring of the image-quality degradation is an important issue for the long-term and healthy use of digital x-ray imaging detectors.

Research for The Environmental Optimization of Dose and Image quality in Digital Radiography (디지털 방사선촬영 환경에서 선량의 최적화 및 영상품질에 대한 연구)

  • Lee, Kwang Jae;Kim, MinGi;Lee, Jong Woong;Kim, Ho Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.203-209
    • /
    • 2013
  • Digital Radiography (DR) has improved a quality of resolution based on a wide dynamic range, high detective quantum efficiency (DQE), and modulation transfer function (MTF), compared with film/screen(F/s). Unlike expectation that a low level of radiation can be used in examination, high level of signal to noise ratio(SNR) due to over-exposure caused increase of exposed dose to patients. Also, the auto exposure control (AEC) using Kilovolage(kVp) in F/S can cause over-exposure. Hence, in this study, we proposed a proper method for using DR, in which effect of tubing Kilovolage on device's image, DR MTF measurement with changes of tubing current (mA), and the quantitative evaluation of skull phantom captured images' PSNR were evaluated. Changes of contrast with tubing Kilovolage can be improved by retouching, and MTF changes according to tubing current(1.41~1.39 lp/mm in 50% area, and 3.19~2.8 lp/mm in 10% area) does not influence on resolution of image. As a result, high tubing Kilovoltage, and tubing current will be suitable to use of DR.

Evaluation of Dynamic X-ray Imaging Sensor and Detector Composing of Multiple In-Ga-Zn-O Thin Film Transistors in a Pixel (픽셀내 다수의 산화물 박막트랜지스터로 구성된 동영상 엑스레이 영상센서와 디텍터에 대한 평가)

  • Seung Ik Jun;Bong Goo Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.359-365
    • /
    • 2023
  • In order to satisfy the requirements of dynamic X-ray imaging with high frame rate and low image lag, minimizing parasitic capacitance in photodiode and overlapped electrodes in pixels is critically required. This study presents duoPIXTM dynamic X-ray imaging sensor composing of readout thin film transistor, reset thin film transistor and photodiode in a pixel. Furthermore, dynamic X-ray detector using duoPIXTM imaging sensor was manufactured and evaluated its X-ray imaging performances such as frame rate, sensitivity, noise, MTF and image lag. duoPIXTM dynamic X-ray detector has 150 × 150 mm2 imaging area, 73 um pixel pitch, 2048 × 2048 matrix resolution(4.2M pixels) and maximum 50 frames per second. By means of comparison with conventional dynamic X-ray detector, duoPIXTM dynamic X-ray detector showed overall better performances than conventional dynamic X-ray detector as shown in the previous study.

Measurement of Imaging Property of Flat-Panel Detector

  • Matsumoto, Masao;Suekane, Kouji;Maeda, Kouji;Ogata, Yuji;Inamura, Kiyonari;Kanai, Kouzo;Kanamori, Hitoshi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.385-388
    • /
    • 2002
  • We measured and evaluated digital, pre-sampling and overall imaging properties (characteristic curves, Modulation Transfer Function (MTF), Wiener spectra (WS), Noise Equivalent Quanta (NEQ) and Detective Quantum Efficiency (DQE)) for the direct type and indirect type of Flat-Panel Detector (FPD). First, the digital and overall characteristic curves of the both types of FPD had more wide dynamic range than that of the S/F system. Second, the pre-sampling and overall MTF of the direct-type FPD were superior to those of the indirect-type FPD. Third, for identical exposures, the digital and overall WS of the direct-type FPD were similar or worse than those of the indirect-type FPD, and for larger exposure, the digital WS of the both types of FPD were smaller, but overall WS of the both types of FPD were larger. Fourth, the digital and overall NEQ and DQE of the direct-type FPD were worse than both NEQ and DQE of the indirect-type FPD at lower spatial frequencies, but were better at higher spatial frequencies.

  • PDF

Image Radiometric Quality Assessment of the Meteorological Payload on GEO-KOMPSAT-2A (정지궤도복합위성 기상탑재체 영상의 복사 성능 품질 측정)

  • Jin, Kyoung-Wook;Yang, Koon-Ho;Choi, Jae-Dong
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.30-39
    • /
    • 2013
  • In this study, calibration processes and methods of evaluating the radiometric quality of satellite images from the meteorological payload on the GEO-KOMPSAT-2A were described. MTF(Modulation Transfer Function), SNR(Signal-To-Noise Ratio), NEdT(Noise Equivalent Delta Temperature), and Dynamic Range, which are the major parameters for assessment of data radiometric quality of space-borne visible and infrared sensors, are focused. Key process of the quality check of the satellite data is the comparing the image radiometric performance parameters during the In-Oribit Test with those acquired from the ground tests. Validation plan of the image quality of the GEO-KOMPSAT-2A Meteorological Imager is addressed based on the analyses results of COMS MI data during the COMS In-Orbit Test period