• Title/Summary/Keyword: Dynamic Light Scattering (DLS)

Search Result 63, Processing Time 0.029 seconds

Stability of Henna Natural Hair Dye Cream Formulation According to Cetyl Alcohol Contents (Cetyl alcohol 함량에 따른 크림 제형 Henna 천연 염모제의 안정성)

  • Kang, Eyoung;Lee, Seunghee;Kim, Woonjung;Jung, Jongjin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.4
    • /
    • pp.1176-1182
    • /
    • 2021
  • In this study, the emulsion stability of henna, a natural hair dye, according to the content of cetyl alcohol, one of the emulsification stabilizers, was analyzed, and the content of cetyl alcohol showing the most stable emulsification was confirmed. To analyze the emulsion stability, differences in particle size, particle shape, viscosity, and color after dyeing were compared according to the content of cetyl alcohol. As a result of dynamic light scattering (DLS) zeta analysis, cetyl alcohol 3% showed the highest zeta potential value of 115.9 mV, and the particle size distribution was henna in which a cream-type hair dye containing 3% cetyl alcohol was dispersed in distilled water. The width of the particle size distribution was narrow compared to. As a result of viscometer analysis, the viscosity increased as the content of cetyl alcohol increased. As a result of measuring the henna pH of the cream formulation, it was measured in a pH range suitable for the scalp. As a result, emulsion stability increases as the content of cetyl alcohol increases in henna cream formulations for hair dye.

A Study on Alumina Nanoparticle Dispersion for Improving Injectivity and Storativity of CO2 in Depleted Gas Reservoirs (고갈 가스전에서 CO2 주입성 및 저장성 향상을 위한 알루미나 나노입자의 분산 특성 연구)

  • Seonghak Cho;Chayoung Song;Jeonghwan Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.23-32
    • /
    • 2023
  • In this study, the Al2O3 nanofluid was synthesized as an additive for improving the injection efficiency and storage capacity of carbon dioxide (CO2) in a depleted sandstone reservoir or deep saline aquifer. As the base fluid, deionized water (DIW) and saline prepared by referring to the composition of API Brine were used, and the fluid was synthesized by using Al2O3 nanofluid with CTAB (cetyltrimethyl-ammonium bromide), a cationic surfactant. After that, the dispersion stability was evaluated by using visual observation, dynamic light scattering (DLS), transmission electron microscope (TEM), and miscibility test. As a result, it was presented that stable nanofluid without agglomeration and precipitation after reaction with 70,000 ppm of brine could be synthesized when the nanoparticle concentration was 0.05 wt% or less.

Synthesis and Properties of Magnetite for Ferrofluid (자성유체용 마그네타이트의 합성 및 특성)

  • Baek, In-Ho;Jeong, Noh-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.63-70
    • /
    • 2012
  • Magnetite in the use of magnetic fluid seal was synthesized by coprecipitation method. Mean particle size of magnetite was measured about 12 nm by using dynamic light scattering(DLS). As a result of XRD test, along with the $NH_4OH$ concentration was increased, the crystallinity of magnetite was increased. The zeta potential of dispersed ferrofluid in water was measured in the range from -49.3 mV to -26.2 mV by DLS. The shape of magnetite particle was sphere form, and the spiking effect of aqueous and oily ferrofulid was confirmed.

Preparation and Characterization of Novel Temperature and pH Sensitive (NIPAM-co-MAA) Polymer Microgels and Their Volume Phase Change with Various Salts (pH 감응성 NIPAM-co-MAA 고분자 마이크로젤의 제조 및 분석과 염 종류에 따른 부피상 변화)

  • Khan, Mohammad Saleem;Khan, Gul Tiaz;Khan, Abbas;Sultana, Sabiha
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.794-801
    • /
    • 2013
  • Novel microgels of N-isopropylacrylamide (NIPAM)-co-methacrylic acid (MAA) (NIPAM-co-MAA) with different contents of N,N-methylene bis acrylamide (MBA) were prepared by emulsion polymerization technique and were studied by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS) and zeta potential measurement. Effect of pH, temperature and different salts concentration on the microgel particles was investigated. DLS results have shown that the hydrodynamic radius of the microgel increased upon increasing pH and decreased upon increasing temperature. The swelling/deswelling behaviors as determined by DLS showed the ionic repulsions of the carboxyl group of the methacrylic acid and hydrophobic interaction of NIPAM. The effect of various salts on volume phase transition temperature (VPTT) was also investigated. Upon increasing salt concentration, VPTT became broad and shifted to a lower temperature. Electrophoretic mobility measurements showed an increase with increasing pH and temperature at a constant ionic strength.

Characterization of lycopene pigments by steric effect of polymer adsorption layer (고분자 흡착층의 입체장해효과를 이용한 라이코펜 색소의 특성분석)

  • Bae, Jihyun;Jung, Jongjin;Lee, Seungho;Kim, Woonjung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.357-366
    • /
    • 2017
  • Natural pigments are materials that express color and have been used in foods, cosmetics, medicine and so on. Since natural pigments are extracted from animals and plants, they are not uniform in size. Red pigments in particular are more lipophilic than other color pigments and tend to aggregate easily in aqueous solutions which make it difficult to reproduce the specific color due to size change. Found to be an allergen and the growing aversion for it to be used in foods, cochineal pigment, an animal pigment used for red pigments is being used less. In this study, red vegetable pigment lycopene extract and gardenia yellow was made uniform in size by ball-milling, then asymmetrical flow-field flow fractionation (AsFlFFF) and dynamic light scattering (DLS) were used to measure the size, and a color meter was used to confirm the color. Experimental results showed that the pigment particles were large in size and size distribution was wide before milling, but the size of the particles decreased and size distribution narrowed after milling. Color meter measurements showed that as the milling time increased, the size of the pigment particles decreased and the brightness, redness, and yellowness increased indicating a bright red color.

Preparation and Characterization of Lithocholic Acid Conjugated Chitosan Oligosaccharide Nanoparticles for Hydrophobic Anticancer Agent Carriers (소수성 항암제의 전달체로 응용하기 위한 리소콜릭산이 결합된 키토산 나노입자의 제조와 특성)

  • Park, Jun-Kyu;Kim, Dong-Gon;Choi, Chang-Yong;Jeong, Young-Il;Kim, Myung-Yul;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.263-269
    • /
    • 2008
  • To develop carriers of hydrophobic anticancer agents based on chitosan, chitosan oligosaccharide lactate (COS) was chemically modified with lithocholic acid (LA) which is one of the bile acids as a hydrophobic group. The physicochemical properties of the lithocholic acid conjugated chitosan nanoparticles (COS-LA) were investigated using $^1H$-NMR spectroscopy, dynamic light scattering (DLS) and spectrofluorophotometer. COS-LA-paclitaxel (CLs-Tx) nanoparticles loading paclitaxel as an anticancer agent were prepared by a dialysis method and its loading efficiency was measured through HPLC. On the basis of DLS results, the estimated particle sizes of CLs-Tx were around 300 nm. Also, the critical micelle concentration (CMC) was proven to be dependent on the degree of substitution of lithocholic acid. It showed that the CLs-Tx has the superior potential for the application as a paclitaxel carrier.

Characterization of PEG-conjugated AuNPs by Using ToF-SIMS Imaging, Spectroscopic and Statistical Techniques

  • Shon, Hyun-Kyong;Son, Mi-Yong;Park, Hyun-Min;Moon, Dae-Won;Song, Nam-Woong;Lee, Tae-Geol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.73-73
    • /
    • 2010
  • Various organic- and bio-conjugated nanoparticles have been studied extensively for biological applications in medical diagnoses and drug delivery systems. Gold nanoparticles (AuNP) and poly(ethylene glycol) (PEG) are known biocompatible materials to be used in vivo and are becoming increasingly important in biomedical applications. In this work, we investigated the stability of PEG-conjugated AuNPs, dialysis and centrifuge effects after synthesis or pegylation of AuNPs as a function of elapsed time by using ToF-SIMS imaging technique along with dynamic light scattering (DLS), UV-visible absorption spectroscopic and statistical analyses. Roughly 15-nm-sized AuNPs were synthesized in a citrate-conjugated form, and then converted into the thiol-terminated PEG (O-[2-(3-Mercaptopropionylamino)ethyl]-O'-methylpolyethyleneglycol, M.W.=5 kDa) form. Based on our data, we will show that ToF-SIMS imaging analysis along with DLS, UV-visible absorption and statistical analyses would be a useful method to evaluate stability of PEG-conjugated AuNPs in various environmental conditions.

  • PDF

Characterization of CdS-quantum dot particles using sedimentation field-flow fractionation (SdFFF) (침강 장-흐름 분획법을 이용한 CdS 양자점 입자의 특성 분석)

  • Choi, Jaeyeong;Kim, Do-Gyun;Jung, Euo Chang;Kwen, HaiDoo;Lee, Seungho
    • Analytical Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.33-39
    • /
    • 2015
  • CdS-QD particles are a nano-sized semiconducting crystal that emits light. Their optical properties show great potential in many areas of applications such as disease-diagnostic reagents, optical technologies, media industries and solar cells. The wavelength of emitting light depends on the particle size and thus the quality control of CdS-QD particle requires accurate determination of the size distribution. In this study, CdS-QD particles were synthesized by a simple ${\gamma}$-ray irradiation method. As a particle stabilizer polyvinyl pyrrolidone (PVP) were added. In order to determine the size and size distribution of the CdS-QD particles, sedimentation field-flow fractionation (SdFFF) was employed. Effects of carious parameters including the the flow rate, external field strength, and field programming conditions were investigated to optimize SdFFF for analysis of CdS-QD particles. The Transmission electron microscopy (TEM) analysis show the primary single particle size was ~4 nm, TEM images indicate that the primarty particles were aggregated to form secondary particles having the mean size of about 159 nm. As the concentration of the stabilizer increases, the particle size tends to decrease. Mean size determined by SdFFF, TEM, and dynamic light scattering (DLS) were 126, 159, and 152 nm, respectively. Results showed SdFFF may become a useful tool for determination of the size and its distribution of various types of inorganic particles.

Three-Dimensional Self-Assembly of Gold Nanoparticles Using a Virus Scaffold

  • Kang, Aeyeon;Lee, Young-Mi;Kang, Hyo Jin;Chung, Sang Jeon;Yun, Wan Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.651-651
    • /
    • 2013
  • Templated strategy is a very powerful tool for creating multi-dimensional self assembly of nanomaterials. Since viral protein cages have a uniform size with a well-defined structure, they can serve as an excellent template for the formation of a three-dimensional self-assembly of synthetic nanoparticles. In this study, we have examined the feasibility of the 3D self-assembly of gold nanoparticles of various sizes using a brome mosaic virus (BMV) capsid with cysteine groups expressed on its surface as a scaffold for the assembly. It was found that the three-dimensional clusters of gold nanoparticles with a designed structure were attainable by this approach, which was verified by transmission electron microscope (TEM) and dynamic light scattering (DLS) analysis.

  • PDF

Chemical synthesis of processable conducting polyaniline derivative with free amine functional groups

  • Kar, Pradip
    • Advances in materials Research
    • /
    • v.3 no.2
    • /
    • pp.117-128
    • /
    • 2014
  • Processable conducting polyaniline derivative with free amine functional groups was successfully synthesized from the monomer o-phenylenediamine in aqueous hydrochloric acid medium using ammonium persulfate as an oxidative initiator. The synthesized poly(o-phenylenediamine) (PoPD) in critical condition was found to be completely soluble in common organic solvents like dimethyl sulfoxide, N,N-dimethyl formamide etc. From the intrinsic viscosity measurement, the optimum condition for the polymerization was established. The polymer was characterized by ultraviolet visible spectroscopy, Fourier transform infrared spectroscopy, proton magnetic resonance spectroscopy ($^1HNMR$) and thermogravimetric (TGA) analyses. The weight average molecular weights of the synthesized polymers were determined by the dynamic light scattering (DLS) method. From the spectroscopic analysis the structure was found to resemble that of polyaniline derivative with free amine functional groups attached to ortho/meta position in the phenyl ring. However, very little ladder unit was also present with in the polymer chain. The moderate thermal stability of the synthesized polymer could be found from the TGA analysis. The average DC conductivity of $2.8{\times}10^{-4}S/cm$ was observed for the synthesized polymer pellet after doping with hydrochloric acid.