• Title/Summary/Keyword: Dynamic Inversion

Search Result 109, Processing Time 0.026 seconds

Development of Flight Control Laws for the T-50 Advanced Supersonic Jet Trainer

  • Kim, Chong-Sup;Hur, Gi-Bong;Hwang, Byung-Moon;Cho, In-Je;Kim, Seung-Jun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.32-45
    • /
    • 2007
  • The T-50 advanced supersonic jet trainer employs the Relaxed Static Stability (RSS) concept to improve the aerodynamic performance while the flight control system stabilizes the unstable aircraft and provides adequate handling qualities. The T-50 flight control laws employ a proportional-plus-integral type controller based on a dynamic inversion method in longitudinal axis and a proportional type controller based on a blended roll system with simple roll rate feedback and beta-betadot feedback system. These control laws are verified by flight tests with various maneuver set flight envelopes and the control laws are updated to resolve flight test issues. This paper describes several concepts of flight control laws used in T-50 to resolve those flight test issues. Control laws for solving the roll-off problem during pitch maneuver in asymmetric loading configurations, improving the departure resistance in negative angle of attack conditions and enhancing the fine tracking performance in air-to-air tracking maneuvers are described with flight test data.

Damped frequencies of precast modular steel-concrete composite railway track slabs

  • Kaewunruen, Sakdirat;Kimani, Stephen Kimindiri
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.427-442
    • /
    • 2017
  • This paper presents unprecedented damped oscillation behaviours of a precast steel-concrete composite slab panel for track support. The steel-concrete composite slab track is an innovative slab track, a form of ballastless track which is becoming increasingly attractive to asset owners as they seek to reduce lifecycle costs and deal with increasing rail traffic speeds. The slender nature of the slab panel due to its reduced depth of construction makes it susceptible to vibration problems. The aim of the study is driven by the need to address the limited research available to date on the dynamic behaviour of steel-concrete composite slab panels for track support. Free vibration analysis of the track slab has been carried out using ABAQUS. Both undamped and damped eigenfrequencies and eigenmodes have been extracted using the Lancsoz method. The fundamental natural frequencies of the slab panel have been identified together with corresponding mode shapes. To investigate the sensitivity of the natural frequencies and mode shapes, parametric studies have been established, considering concrete strength and mass and steel's modulus of elasticity. This study is the world first to observe crossover phenomena that result in the inversion of the natural orders without interaction. It also reveals that replacement of the steel with aluminium or carbon fibre sheeting can only marginally reduce the natural frequencies of the slab panel.

Cellular Uptake Behavior of Poly(D,L-lactide-co-glycolide) Nanoparticles Derivatized with HIV-1 Tat49-57 Peptide (Abbreviated Title: Tat-PLGA Nanoparticles)

  • Park, Ju-Young;Nam, Yoon-Sung;Kim, Jun-Oh;Han, Sang-Hoon;Chang, Ih-Seop
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.2
    • /
    • pp.101-106
    • /
    • 2004
  • This work aims at examining the cellular uptake behavior of poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles derivatized with a protein transduction domain (PTD) using HeLa cells. For this purpose, $Tat_{49-57}$ peptide derived from transcriptional activation (Tat) protein of HIV type-1 was covalently conjugated to the terminal end of PLGA. Nanoparticles were ten prepared with the $Tat_{49-57}-PLGA$ conjugates by a spontaneous phase inversion method. The prepared particles had a mean diameter of ca. 84 nm, as measured by dynamic light scattering. The interaction of the Tat-PLGA nanoparticles with cells was examined by using confocal laser scanning microscopy. It was found tat Tat-PLGA nanoparticles incubated with HeLa cells could efficiently translocate into cytoplasm, while plain PLGA nanoparticles showed negligible cellular uptake. In addition, even at $4^{\circ}C$ or in the presence of sodium azide significant cellular internalization of Tat-PLGA nanoparticles was still observed. These results indicate that a non-endocytotic translocation mechanism might be involved in the cellular uptake of Tat-PLGA nanoparticles.

Automatic Generation of Serial Music Using Space-Filling Curves (공간 채움 곡선을 이용한 자동 음열 음악 작곡 방법)

  • Yoo, Min-Joon;Lee, In-Kwon
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.733-738
    • /
    • 2008
  • Serial Music, introduced by A. Sch nberg, is a one of the important composition techniques. This music style has features of pantonality and atonality, so it generates unique atmosphere of modern music. In this paper, we introduce an method of generating serial music using mathematical algorithm. This method generates music that satisfy the requirement that the number of pitches belonged to each pitch class are exactly same, though the requirement is less strict than Sch nberg's definition. To do this, our method uses space-filling curves traversing the twelve tone matrix, which is constructed by the serial series, its inversion and its transpose. Using these curves, we can generate a music that has all notes in the matrix exactly once and adequate repeatness because of the curve's locality. Result music, therefore, can be more suitable for people that are not familiar with modern music, while maintaining the features of pantonality and atonality. This paper also introduces a method of generating extended serial music that uses serialism of duration and dynamic of notes, using multi-dimensional space-filling curves.

  • PDF

The Study on the Temperature Compensation of Ultrasonic Motor for Robot Actuator Using Fuzzy Controller (퍼지제어기를 이용한 로보트 액츄에이터용 초음파 모터의 온도 보상에 관한 연구)

  • 차인수;유권종;백형래;김영동
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.165-172
    • /
    • 1998
  • The electromechanical energy conversion conditioning and processing implementation in USM direct motion control system is generally divided into two power stages: the two-phase high-frequency ac power inversion stage for driving piezoelectric ceramic PZT transducer array off the USM stator and the mechanical thrust power conversion stage based on the frictional force between the piezo electric stator array and the rotary slider of the USM. However, the dynamic and steady-state mathematical modeling of the USM is extremely default from a theoretical point of view because it contains many complicated an nonlinear characteristics dependant on operation temperature. In +2$0^{\circ}C$~3$0^{\circ}C$, the operating characteristics of the USM has represented normal condition. But the other temperature, it has abnormal condition so that driving frequency, current and motor speed will be down. The recent USM has controller without temperature compensation. This study represents the fuzzy controller for speed compensation according to operating temperature by driving frequency.

Changes in lower extremity alignment in standing position using a foot plate

  • Lee, Hye-Mi;Yang, Ji-Eun;Lee, Ju-Yeon;Im, Hong-Jun;Jeong, Yu-Jin;Park, Dae-Sung
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.3
    • /
    • pp.132-137
    • /
    • 2016
  • Objective: Eversion of the foot is created with internal rotation of the shank, and inversion of the foot is created with external rotation of the shank. The purpose of the study was to investigate the effect of continuous changes in the angle of the subtalar joint on lower extremity alignments. Design: Cross-sectional study. Methods: Seventeen healthy young adult subjects recruited. The subjects were asked to stand up in a natural standing position on a footplate with eye open and equal weight on each foot for 10s in two different conditions: The right subtalar joint was everted continuously $0^{\circ}-20^{\circ}$ and in separate segments of $0^{\circ}$, $5^{\circ}$, $10^{\circ}$, $15^{\circ}$, $20^{\circ}$. The averages of three trials were used. The observation of the changes in the lower extremity was performed with the use of 3-dimensional motion analysis. For data analysis, the SPSS 18.0 software using paired t-test and repeated measures analysis of variance (ANOVA) was applied. Results: The angle was significantly increased at the horizontal rotation angle of the shank, thigh, and ankle without anterior rotation of the pelvis (p<0.05). The maximum horizontal rotation angle at the thigh on $20^{\circ}$ was $-4.52^{\circ}$ in static, and $-3.10^{\circ}$ in the dynamic conditions compared to $0^{\circ}$. Conclusions: Increased unilateral foot pronation, thigh, shank, ankle horizontal rotation variance was significantly effective. The observation of the changes in foot abduction with the use of a 3-dimensional motion analysis augmented in predicting the angle values of each segment of the lower extremity. In further studies, a comparison of the right and left subtalar joints need to be investigated.

The Effects of Ankle Taping on Ankle Angular Velocity, Ground Reaction Force and Postural Stability during Jump Landing on Athlete with Functional Ankle Instability (기능적 발목 불안정성을 가진 선수에게 발목 테이핑이 점프 후 착지 시 발목 각속도, 지면반력과 자세 안정성에 미치는 영향)

  • Kim, Kyoung-Hun;Cho, Joon-Heang
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.3
    • /
    • pp.519-528
    • /
    • 2009
  • The effects of taping on the use of such measures for prevention have already been comprehensively described in the literature. However, few studies have analyzed ground reaction forces and postural stability with functional ankle instability subject during dynamic activities with ankle taping The purpose of this study was to identify the effects of ankle taping on ground reaction force and postural stability during jump landing. Fourteen players who has ankle instability were participated in this study. we used vicon and force platform. The application of taping who has ankle instability decreased DF and inversion angular velocity and peak vertical ground reaction force during landing. It also improved A-P cop, M-L cop in stability. The findings of this study support the use of taping as part of injury prevention for subject with functional ankle instability in clinical setting.

Minimizing Energy Consumption in Scheduling of Dependent Tasks using Genetic Algorithm in Computational Grid

  • Kaiwartya, Omprakash;Prakash, Shiv;Abdullah, Abdul Hanan;Hassan, Ahmed Nazar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2821-2839
    • /
    • 2015
  • Energy consumption by large computing systems has become an important research theme not only because the sources of energy are depleting fast but also due to the environmental concern. Computational grid is a huge distributed computing platform for the applications that require high end computing resources and consume enormous energy to facilitate execution of jobs. The organizations which are offering services for high end computation, are more cautious about energy consumption and taking utmost steps for saving energy. Therefore, this paper proposes a scheduling technique for Minimizing Energy consumption using Adapted Genetic Algorithm (MiE-AGA) for dependent tasks in Computational Grid (CG). In MiE-AGA, fitness function formulation for energy consumption has been mathematically formulated. An adapted genetic algorithm has been developed for minimizing energy consumption with appropriate modifications in each components of original genetic algorithm such as representation of chromosome, crossover, mutation and inversion operations. Pseudo code for MiE-AGA and its components has been developed with appropriate examples. MiE-AGA is simulated using Java based programs integrated with GridSim. Analysis of simulation results in terms of energy consumption, makespan and average utilization of resources clearly reveals that MiE-AGA effectively optimizes energy, makespan and average utilization of resources in CG. Comparative analysis of the optimization performance between MiE-AGA and the state-of-the-arts algorithms: EAMM, HEFT, Min-Min and Max-Min shows the effectiveness of the model.

The Finite Element Formulation and Its Classification of Dynamic Thermoelastic Problems of Solids (구조동역학-열탄성학 연성문제의 유한요소 정식화 및 분류)

  • Yun, Seong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.37-49
    • /
    • 2000
  • This paper is for the first essential study on the development of unified finite element formulations for solving problems related to the dynamics/thermoelastics behavior of solids. In the first part of formulations, the finite element method is based on the introduction of a new quantity defined as heat displacement, which allows the heat conduction equations to be written in a form equivalent to the equation of motion, and the equations of coupled thermoelasticity to be written in a unified form. The equations obtained are used to express a variational formulation which, together with the concept of generalized coordinates, yields a set of differential equations with the time as an independent variable. Using the Laplace transform, the resulting finite element equations are described in the transform domain. In the second, the Laplace transform is applied to both the equation of heat conduction derived in the first part and the equations of motions and their corresponding boundary conditions, which is referred to the transformed equation. Selections of interpolation functions dependent on only the space variable and an application of the weighted residual method to the coupled equation result in the necessary finite element matrices in the transformed domain. Finally, to prove the validity of two approaches, a comparison with one finite element equation and the other is made term by term.

  • PDF

Control Law Design for a Tilt-Duct Unmanned Aerial Vehicle using Sigma-Pi Neural Networks (Sigma-Pi 신경망을 이용한 틸트덕트 무인기의 제어기 설계연구)

  • Kang, Youngshin;Park, Bumjin;Cho, Am;Yoo, Changsun
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.14-21
    • /
    • 2017
  • A Linear parameterized Sigma-Pi neural network (SPNN) is applied to a tilt-duct unmanned aerial vehicle (UAV) which has a very large longitudinal stability ($C_{L{\alpha}}$). It is uncontrollable by a proportional, integral, derivative (PID) controller due to heavy stability. It is shown that the combined inner loop and outer loop of SPNN controllers could overcome the sluggish longitudinal dynamics using a method of dynamic inversion and pseudo-control to compensate for reference model error. The simulation results of the way point guidance are presented to evaluate the performance of SPNN in comparison to a PID controller.