• 제목/요약/키워드: Dynamic Interface

검색결과 893건 처리시간 0.024초

지반과 지하구조물 경계의 미끄러짐 조건에 관한 연구 (Sliding Conditions at the Interface between Soil and Underground Structure)

  • 김대상
    • 한국지진공학회논문집
    • /
    • 제6권1호
    • /
    • pp.7-11
    • /
    • 2002
  • 본 연구에서는 다단계방법(multi-step method)을 사용하여, 지진시 지반과 지하구조물 경계가 가장 미끄러지기 쉬운 상태일 수 있는 지반 공진시에 대하여 지하구조물 축방향 동지반강성계수와 미끄러지기 쉬운 조건들을 구하였다. 상재하중에 의한 지반과 지하구조물 경계에서의 전단저항력과 지진시 발생되는 미끄러짐 부분의 전단력을 비교함으로써 미끄러짐 조건을 결정하였다. 그리고 매개변수 해석을 통하여 지하구조물의 크기와 위치, 지반조건, 표층지반의 형상 및 경계마찰계수에 대하여 미끄러지기 쉬운 조건을 구하였다.

사용자 요구에 의한 Dynamic Circuit Network 구현 및 검증 (On Demand Dynamic Circuit Network Implementation)

  • 강형규;송왕철;홍충선
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2010년도 한국컴퓨터종합학술대회논문집 Vol.37 No.1(D)
    • /
    • pp.380-383
    • /
    • 2010
  • 본 논문은 원격에서의 의료 기술이나, 대용량을 요구하는 실시간 협업 등에서 사용자의 요구에 따라 빠르게 요구 대역폭을 할당하고 보장하기 위한 Dynamic Circuit Network 구현 방법을 기술 하였다. 이를 위해 QoS, MPLS, RSVP 기술을 기반으로 2계층의 LSP을 동적으로 할당할 수 있도록 하였으며, 사용자는 이를 웹 기반의 인터페이스(web-based user interface)를 통해 쉽게 서비스 받을 수 있도록 하였다.

  • PDF

A Study on Developmental Direction of Interface Design for Gesture Recognition Technology

  • Lee, Dong-Min;Lee, Jeong-Ju
    • 대한인간공학회지
    • /
    • 제31권4호
    • /
    • pp.499-505
    • /
    • 2012
  • Objective: Research on the transformation of interaction between mobile machines and users through analysis on current gesture interface technology development trend. Background: For smooth interaction between machines and users, interface technology has evolved from "command line" to "mouse", and now "touch" and "gesture recognition" have been researched and being used. In the future, the technology is destined to evolve into "multi-modal", the fusion of the visual and auditory senses and "3D multi-modal", where three dimensional virtual world and brain waves are being used. Method: Within the development of computer interface, which follows the evolution of mobile machines, actively researching gesture interface and related technologies' trend and development will be studied comprehensively. Through investigation based on gesture based information gathering techniques, they will be separated in four categories: sensor, touch, visual, and multi-modal gesture interfaces. Each category will be researched through technology trend and existing actual examples. Through this methods, the transformation of mobile machine and human interaction will be studied. Conclusion: Gesture based interface technology realizes intelligent communication skill on interaction relation ship between existing static machines and users. Thus, this technology is important element technology that will transform the interaction between a man and a machine more dynamic. Application: The result of this study may help to develop gesture interface design currently in use.

토목섬유 접촉면을 포함한 해상 폐기물처분장 호안구조물의 동적 거동 (Dynamic Behavior of Offshore Waste Landfill Revetment with Geosynthethic-Soil Interface)

  • 곽창원;오명학;박인준;장동인
    • 한국지반공학회논문집
    • /
    • 제33권12호
    • /
    • pp.141-150
    • /
    • 2017
  • 해상처분장 건설시 폐기물 내부에 생성되는 침출수 및 기타 오염물질을 차폐하기 위하여 토목섬유를 활용하는 것이 일반적이며, 이러한 토목섬유 포설시 필연적으로 토목섬유-흙 접촉면이 생성되게 된다. 본 연구에서는 토목섬유-흙 접촉면이 포함된 해상처분장에 지진하중 재하시 동적 전단거동을 수치해석적으로 파악하였다. 해상처분장은 호안형식에 따라 경사식 및 중력식으로 구분할 수 있으며 각각의 형식에 대하여 2차원 동적수치해석을 수행하여 그 거동을 분석하였다. 수치해석시 지중 간극수압의 분포를 고려한 유효응력해석을 수행하였으며 호안형식에 따른 토목섬유-흙 접촉면의 변형율 및 축력 발생경향을 지진파 주기 특성에 따라 비교하였다. 그 결과, 중력식 호안형식을 적용시 액상화에 대하여 보다 안정한 것으로 판단되고, 토목섬유 축력 및 접촉면 전단변형에 유리한 것으로 나타났다.

Modeling of CNTs and CNT-Matrix Interfaces in Continuum-Based Simulations for Composite Design

  • Lee, Sang-Hun;Shin, Kee-Sam;Lee, Woong
    • 한국재료학회지
    • /
    • 제20권9호
    • /
    • pp.478-482
    • /
    • 2010
  • A series of molecular dynamic (MD), finite element (FE) and ab initio simulations are carried out to establish suitable modeling schemes for the continuum-based analysis of aluminum matrix nanocomposites reinforced with carbon nanotubes (CNTs). From a comparison of the MD with FE models and inferences based on bond structures and electron distributions, we propose that the effective thickness of a CNT wall for its continuum representation should be related to the graphitic inter-planar spacing of 3.4${\AA}$. We also show that shell element representation of a CNT structure in the FE models properly simulated the carbon-carbon covalent bonding and long-range interactions in terms of the load-displacement behaviors. Estimation of the effective interfacial elastic properties by ab initio simulations showed that the in-plane interfacial bond strength is negligibly weaker than the normal counterpart due to the nature of the weak secondary bonding at the CNT-Al interface. Therefore, we suggest that a third-phase solid element representation of the CNT-Al interface in nanocomposites is not physically meaningful and that spring or bar element representation of the weak interfacial bonding would be more appropriate as in the cases of polymer matrix counterparts. The possibility of treating the interface as a simply contacted phase boundary is also discussed.

해석적 주파수종속 무한요소를 사용한 시간영역해석의 지반-구조물의 상호작용을 고려한 지진해석 (Time Domain Soil-Structure Interaction Analysis for Earthquake Loadings Based on Analytical Frequency-Dependent Infinite Elements)

  • Kim, Doo-Kie;Yun, Chung-Bang
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.121-128
    • /
    • 1999
  • This paper presents a time domain method for soil-structure interaction analysis for seismic loadings. It is based on the finite element formulation incorporating analytical frequency-dependent infinite elements for the far field soil. The dynamic stiffness matrices of the far field region formulated using the present method in frequency domain can be easily transformed into the corresponding matrices in time domain. At first, the equivalent earthquake forces are evaluated along the interface between the near and the far fields from the free-field response analysis carried out in frequency domain, and the results are transformed into the time domain. An efficient procedure is developed for the convolution integrals to evaluate the interaction force along the interface, which depends on the response on the interface at the past time instances as well as the concurrent instance. Then, the dynamic responses are obtained for the equivalent earthquake force and the interaction force using Newmark direct integration technique. Since the response analysis is carried out in time domain, it can be easily extended to the nonlinear analysis. Example analysis has been carried out to verify the present method in a multi-layered half-space.

  • PDF

강인적응 알고리즘을 통한 Haptic Interlace의 임피던스 제어 (A Robust Adaptive Impedance Control Algorithm for Haptic Interfaces)

  • 박헌;이상철;이수성;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제8권5호
    • /
    • pp.393-400
    • /
    • 2002
  • Teleoperation enables an operator to manipulate remote objects. One of the main goals in teleoperation researches is to provide the operator with the fueling of the telepresence, being present at the remote site. For these purposes, a master robot must be designed as a bilateral control system that can transmit position/force information to a slave robot and feedback the interaction force. A newly proposed impedance algorithm is applied for the control of a haptic interface that was developed as a master robot. With the movements of the haptic interface for position/force commands, impedance parameters are always varying. When the impedance parameters between an operator and the haptic interface and the dynamic model are known precisely, many model based control theories and methods can be used to control the device accurately. However, due to the parameters'variations and the uncertainty of the dynamic model, it is difficult to control haptic interfaces precisely. This paper presents a robust adaptive impedance control algorithm for haptic interfaces.

A model to analyze a buried structure response to surface dynamic loading

  • Dancygier, A.N.;Karinski, Y.S.
    • Structural Engineering and Mechanics
    • /
    • 제9권1호
    • /
    • pp.69-88
    • /
    • 2000
  • A relatively simple model of a buried structure response to a surface loading that can simulate a possible opening and closure of a gap between the soil and the structure is presented. Analysis of the response of small and medium scale buried roof slabs under surface impulsive loading shows that the model's predictions are in fairly good agreement with the experimental results. Application of the model to a study case shows the relative influence of system parameters such as, the depth of burial, the arching coefficient, and the roof thickness, on the interface pressure and on the roof displacement. This model demonstrates the effect of a gap between the structure and the soil. The relative importance of including a gap opening and closure in the analysis is examined by the application of the model to a study case. This study results show that the deeper the depth of burial, the longer the gap duration, and the shorter the duration of the initial interface impact, while the higher the soil's shear resistance, the higher the gap duration, and the shorter the initial interface impact duration.

Transient analysis of two dissimilar FGM layers with multiple interface cracks

  • Fallahnejad, Mehrdad;Bagheri, Rasul;Noroozi, Masoud
    • Structural Engineering and Mechanics
    • /
    • 제67권3호
    • /
    • pp.277-281
    • /
    • 2018
  • The analytical solution of two functionally graded layers with Volterra type screw dislocation is investigated under anti-plane shear impact loading. The energy dissipation of FGM layers is modeled by viscous damping and the properties of the materials are assumed to change exponentially along the thickness of the layers. In this study, the rate of gradual change ofshear moduli, mass density and damping constant are assumed to be same. At first, the stress fields in the interface of the FGM layers are derived by using a single dislocation. Then, by determining a distributed dislocation density on the crack surface and by using the Fourier and Laplace integral transforms, the problem are reduce to a system ofsingular integral equations with simple Cauchy kernel. The dynamic stress intensity factors are determined by numerical Laplace inversion and the distributed dislocation technique. Finally, various examples are provided to investigate the effects of the geometrical parameters, material properties, viscous damping and cracks configuration on the dynamic fracture behavior of the interacting cracks.

PC 와 I/O 인터페이스 보드를 이용한 유압식 하역장치의 실시간 모의시험기 개발 (Development of a Hydraulic Leading System Real-Time Simulator Using a PC and I/O Interface Board)

  • 이성래
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.426-432
    • /
    • 2000
  • The hydraulic loading system real-time simulator using a PC and I/O interface board is developed to simulate the dynamic characteristics of hydraulic loading system in real time. The simulator receives the digital on-off control signals generated by the operator through the D/I channels, updates the state and output variables of the hydraulic loading system responding to the input signals and draw the moving pictuters of the lift cylinder, lift arm and loading box on the PC monitor in real time. Also, the operator can observe the displacement and pressure of cylinder, the rotatinal angle, reaction force, and safety factors of lift arm representing the operation of hydraulic loading system through the PC monitor in real time. The real-time simulator can be a very useful tool to design industrial dynamic systems and feel the goodness of the system operation since the operator can observe the moving pictures of the operating system in real time as he operates the real time simulator.

  • PDF