• 제목/요약/키워드: Dynamic Influence Coefficient

검색결과 111건 처리시간 0.022초

세브론 스프링의 강성 변화에 따른 철도차량의 동특성 예측 연구 (Prediction of Dynamic Characteristics of Railway Vehicle by Stiffness Variation of Chevron Rubber Spring)

  • 유원희;박준혁;박남철;구정서
    • 한국소음진동공학회논문집
    • /
    • 제27권2호
    • /
    • pp.162-167
    • /
    • 2017
  • The chevron rubber spring is used for subway vehicle as a primary suspension. Generally, the primary suspension has an influence to the running performance and not so much effect on the ride comfort in railway vehicle. But the stiffness of chevron spring is harder and harder as time goes on because of rubber characteristics. Therefore the dynamic characteristics such as ride comfort and derailment coefficient should be reviewed according to the stiffness variation of chevron rubber spring. In this paper the effect of chevron rubber spring on dynamic characteristics was studied by considering multi-body dynamics of railway vehicle on one straight line and seven curved lines.

A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams

  • Ahmed, Ridha A.;Fenjan, Raad M.;Hamad, Luay Badr;Faleh, Nadhim M.
    • Advances in materials Research
    • /
    • 제9권1호
    • /
    • pp.33-48
    • /
    • 2020
  • With the use of differential quadrature method (DQM), forced vibrations and resonance frequency analysis of functionally graded (FG) nano-size beams rested on elastic substrate have been studied utilizing a shear deformation refined beam theory which contains shear deformations influence needless of any correction coefficient. The nano-size beam is exposed to uniformly-type dynamical loads having partial length. The two parameters elastic substrate is consist of linear springs as well as shear coefficient. Gradation of each material property for nano-size beam has been defined in the context of Mori-Tanaka scheme. Governing equations for embedded refined FG nano-size beams exposed to dynamical load have been achieved by utilizing Eringen's nonlocal differential law and Hamilton's rule. Derived equations have solved via DQM based on simply supported-simply supported edge condition. It will be shown that forced vibrations properties and resonance frequency of embedded FG nano-size beam are prominently affected by material gradation, nonlocal field, substrate coefficients and load factors.

Development of Vibration Analysis Algorithm for Joined Conical-cylindrical Shell Structures using Transfer of Influence Coefficient

  • Yeo, Dong-Jun;Choi, Myung-Soo
    • 동력기계공학회지
    • /
    • 제17권1호
    • /
    • pp.50-57
    • /
    • 2013
  • This describes the formulation for the free vibration of joined conical-cylindrical shells with uniform thickness using the transfer of influence coefficient. This method was developed based on successive transmission of dynamic influence coefficients, which were defined as the relationships between the displacement and the force vectors at arbitrary nodal circles of the system. The two edges of the shell having arbitrary boundary conditions are supported by several elastic springs with meridional/axial, circumferential, radial and rotational stiffness, respectively. The governing equations of vibration of a conical shell, including a cylindrical shell, are written as a coupled set of first order differential equations by using the transfer matrix of the shell. Once the transfer matrix of a single component has been determined, the entire structure matrix is obtained by the product of each component matrix and the joining matrix. The natural frequencies and the modes of vibration were calculated numerically for joined conical-cylindrical shells. The validity of the present method is demonstrated through simple numerical examples, and through comparison with the results of previous researchers.

The influence of magmatic rock thickness on fracture and instability law of mining surrounding rock

  • Xue, Yanchao;Sun, Wenbin;Wu, Quansen
    • Geomechanics and Engineering
    • /
    • 제20권6호
    • /
    • pp.547-556
    • /
    • 2020
  • An understanding of the influence of MR (Magmatic Rock) thickness on the surrounding rock behaviors is essential for the prevention and management of dynamic disasters in coal mining. In this study, we used FLC3D to study the breaking and instability laws of surrounding rock with different MR thicknesses in terms of strata movement, stress and energy. The mechanism of dynamic disasters was revealed. The results show that the thicker the MR is, (1) the smaller the subsidence of the overlying strata is, but the subsidence span of the overlying strata become wider, and the corresponding displacement deformation value of the basin edge become smaller. (2) the slower the growth rate of abutment pressure in front of the working face is, but the peak value is smaller, and the influence range is larger. The peak value decreases rapidly after the breaking, and the stress concentration coefficient is maintained at about 1.31. (3) the slower the peak energy in front of coal wall, but the range of energy concentration increases (isoline "O" type energy circle). Finally, a case study was conducted to verify the disaster-causing mechanism. We anticipate that the research findings presented herein can assist in the control of dynamic hazards.

전달영향계수법에 의한 원통형 셀 구조물의 자유진동해석 (Free Vibration Analysis of Cylindrical Shell Structures with Stiffeners by Transfer Influence Coefficient Method)

  • 문덕홍;여동준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 춘계학술대회논문집; 부산수산대학교, 10 May 1996
    • /
    • pp.342-348
    • /
    • 1996
  • This paper describes the formulation for the vibration analysis of cylindrical shells with stiffeners by the transfer influence coefficient method. This method was developed on the base of the concept of the successive transmission of dynamic influence coefficients. The simple computational results from a personal computer demonstrate the validity of the present method, that is, the numerical high accuracy and the flexibility of programming, are compared with results of the transfer matrix method. It is also confirmed that the present algorithm could provide the solutions of high accuracy for system with a number of intermediate rigid supports. And all boundary conditions and the intermediate stiff supports such as intermediate rigid supports between shell and foundation can be treated only by adequately controlling the values of the spring constants.

  • PDF

유연도 영향계수법을 이용한 접촉 결합 부의 모델링 (Finite Element Modeling of Contact Joints by Flexibility Influence Coefficient)

  • 조성욱;오제택
    • 한국정밀공학회지
    • /
    • 제23권6호
    • /
    • pp.128-135
    • /
    • 2006
  • Rational dynamic modeling and analysis method f3r complex structures are studied with special attention to slide way joints. For modeling of slide way joints, a general modeling technique is used by using the influence coefficients method which is applied to the conversion of detailed finite element model to the equivalent reduced joint model. The theoretical part of this method is illustrated and the method is applied to the structure with slide way joint. In this method, the non-linearity of the contact surfaces is considered within a proper range and the boundary effect of the joint model could be eliminated. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam and slide way joints of the vertical type lathe. The method can also be used to other kinds of joint modeling. The results of these analysis were compared with those of Yoshimura models and rigid joint models, which demonstrated the practical applicability of the proposed method.

전달영향계수법에 의한 탄성지지를 갖는 원통형 셀구조물의 자유진동해석 (Free Vibration Analysis of Circular Cylindrical Shell Structures with Elastic Supports by the Transfer Influence Coefficient Method)

  • 문덕홍;여동준
    • 소음진동
    • /
    • 제4권4호
    • /
    • pp.469-478
    • /
    • 1994
  • This paper desfcribes the formulation for the analysis of the free vibration of a circular cylindrical shell with elastic supports by the transfer influence coefficient method. This method was developed on the base of the concept of the successive transmission of dynamic influence coefficients. The analysis algorithm for circular cylindrical shell elastically restrained by springs, which plays an important role in many industrial fields, is discussed. The supporting springs have the axial, circumferential, radial and rotational spring constants uniformly distributed along the circumference of the shell. The simple computational results on a personal computer demonstrate the validity of the present method, that is, the numerical high accuracy, the high speed analysis method and the flexibility for programming, compared with results of the transfer matrixmethod and reference. We also confirmed that the present algorithm could obtain the solutions of high accuracy for system with a number of intermediate rigid supports. And we could easily treat the intermediate support and all boundary conditions by adequately varying the values of spring constants.

  • PDF

원통형 대책구조물의 배치조건에 따른 토석류의 충격하중에 대한 실험적 연구 (Experimental Study on the Effect of Arrangement of Cylindrical Countermeasures on Debris Flow Impact Load)

  • 조흥석;김범준;윤찬영
    • 한국지반공학회논문집
    • /
    • 제36권11호
    • /
    • pp.135-148
    • /
    • 2020
  • 본 연구에서는 원통형 대책구조물의 배치조건에 따라 각각의 대책구조물에 작용하는 토석류의 충격하중을 확인하기 위해, 대책구조물이 설치가 가능한 소형수로에서 대책구조물의 종방향 배열 수를 변화시켜가면서 실내모형실험을 수행하였다. 이를 바탕으로 토석류의 충격하중에 따른 흐름특성을 확인하고, 속도 및 흐름깊이에 따른 프루드 수와 동적압력계수를 분석하였다. 실험결과, 모든 조건에서 두 번째 대책구조물에서 최대충격하중이 가장 컸으며, 기존의 연구와 비교하여 동적압력계수 산정방법을 제안하고 그 값을 비교 분석하였다.

크랭크 축의 모우드 해석에 관한 연구 (A study on modal analysis of a crankshaft)

  • 박윤식;제양규;오동엽
    • 오토저널
    • /
    • 제7권4호
    • /
    • pp.67-72
    • /
    • 1985
  • An analytical and experimental modal analysis is carried out upon a crankshaft of a four cylinder internal combustion engine for studying dynamic characteristics of the shaft. Influence coefficient method is adopted in modelling the object and the calculated dynamic properties are directly compared with the experimentally obtained torsional and bending natural frequencies and mode shapes. It is found that the test results are well agree with the outputs from analytical model especially in low harmonics.

  • PDF

Influence of different parameters on nonlinear friction-induced vibration characteristics of water lubricated stern bearings

  • Lin, Chang-Gang;Zou, Ming-Song;Zhang, Hai-Cheng;Qi, Li-Bo;Liu, Shu-Xiao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.746-757
    • /
    • 2021
  • To investigate the mechanism of friction-induced vibration and noise of ship water lubricated stern bearings, a two-degree-of-freedom (2-DOF) nonlinear self-excited vibration model is established. The novelty of this work lies in the detailed analysis of influence of different parameters on the stability and nonlinear vibration characteristics of the system, which provides a theoretical basis for the various friction vibration and noise phenomenon and has a very important directive meaning for low noise design of water lubricated stern bearings. The results reveal that the change of any parameter, such as rotating speed of shaft, contact pressure, friction coefficient, system damping and stiffness, has an important influence on the stability and nonlinear response of the system. The vibration amplitudes of the system increase as (a) rotating speed of shaft, contact pressure, and the ratio of static friction coefficient to dynamic friction coefficient increase and (b) the transmission damping between motor and shaft decreases. The frequency spectrum of the system is modulated by the first mode natural frequency, which is continuous multi-harmonics of the first mode natural frequency. The response of the system presents a quasi-periodic motion.